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Bioenergetics modeling is a widely used tool in fisheries management and research. Although popular, currently available soft-
ware (i.e., Fish Bioenergetics 3.0) has not been updated in over 20 years and is incompatible with newer operating systems (i.e., 
64-bit). Moreover, since the release of Fish Bioenergetics 3.0 in 1997, the number of published bioenergetics models has increased 
appreciably from 56 to 105 models representing 73 species. In this article, we provide an overview of Fish Bioenergetics 4.0 (FB4), 
a newly developed modeling application that consists of a graphical user interface (Shiny by RStudio) combined with a modeling 
package used in the R computing environment. While including the same capabilities as previous versions, Fish Bioenergetics 
4.0 allows for timely updates and bug fixes and can be continuously improved based on feedback from users. In addition, users 
can add new or modified parameter sets for additional species and formulate and incorporate modifications such as habitat-
dependent functions (e.g., dissolved oxygen, salinity) that are not part of the default package. We hope that advances in the new 
modeling platform will attract a broad range of users while facilitating continued application of bioenergetics modeling to a wide 

spectrum of questions in fish biology, ecology, and management.

INTRODUCTION

The bioenergetics modeling approach provides a sound, theo-
retical tool for quantifying energy allocation in fishes by parti-
tioning consumed energy into three basic components: (1) metab-
olism, (2) wastes, and (3) growth (Winberg 1956; Ney 1993). The 
models are often used to estimate growth or food consumption 
and are particularly attractive for estimating feeding rates of free-
ranging fishes given the time and effort required by traditional 
techniques (Kitchell et al. 1977).

Based on the second law of thermodynamics, bioenergetics 
models are formulated as an energy balance equation:

C = R + A + SDA + F + U + G,

where energy input (i.e., consumed food, C) is balanced by meta-
bolic demands (standard metabolism, R; energy expenditure due 
to activity, A; and specific dynamic action, SDA, or the energy 
required to digest food), waste losses due to egestion (F) and ex-
cretion (U), and somatic and/or gonadal growth (G); units for all 
terms are typically joules per day.

Traditionally, bioenergetics models have been used to evalu-
ate factors affecting fish growth through diet or environmental 
constraints (Bevelhimer and Adams 1993) or to quantify the im-
pact a predator may have on its prey (Stewart et al. 1981, 1983). 
Currently, bioenergetics models are widely used as an analytical 
tool to address a broad range of questions in physiology, ecology, 
aquaculture, and fisheries management (Hartman and Hayward 
2007; Chipps and Wahl 2008; Bevelhimer and Breck 2009; Arm-
strong and Schindler 2011; Madenjian 2011; Canale et al. 2013). 
Bioenergetics modeling has also improved our understanding of 
feeding and growth of fish at different life stages (Post 1990; Ma-
don and Culver 1993; Beauchamp 2009; Lawrence et al. 2015). 
As new challenges have arisen, researchers have found new 
bioenergetics model applications in fisheries management and 
research (Hartman and Kitchell 2008). Special symposia held 
at annual meetings of the American Fisheries Society (1989 in 
Anchorage, Alaska; 1992 in Rapid City, South Dakota; 2004 in 
Madison, Wisconsin) have advanced the science by broadening 
the application of bioenergetics modeling, identifying limitations 
to model inference, and recommending future directions for the 
field (Bartell et al. 1986; Beauchamp et al. 1989; Boisclair and 
Leggett 1989; Brandt and Hartman 1993; Hansen et al. 1993; 
Ney 1993; Megrey et al. 2007; Chipps and Wahl 2008; Hartman 
and Kitchell 2008; Madenjian et al. 2012). More recently, bio-
energetics models have been used to explore whole-life growth 
patterns of fish (Rose et al. 1999; Hayes et al. 2000), to evaluate 
the impact of invasive species on aquatic ecosystems (Cooke and 

Hill 2010; Cerino et al. 2013), to assess contaminant accumula-
tion by fish (Stafford and Haines 2001; Trudel and Rasmussen 
2006), and to quantify the effects of habitat alterations on fish 
survival (Niklitschek and Secor 2009; Rose et al. 2013). Increas-
ingly, researchers are turning to bioenergetics modeling as a ro-
bust approach for evaluating effects of climate change on forag-
ing, growth, and mortality of fishes (Petersen and Kitchell 2001; 
Megrey et al. 2007; Kishi et al. 2010; Breeggemann et al. 2015).

Often referred to as the “Wisconsin model,” the popular 
modeling approach used today was based on the pioneering 
work of James F. Kitchell and collaborators at the University 
of Wisconsin–Madison Center for Limnology (Kitchell et al. 
1977), which in turn built upon earlier work on energy parti-
tioning in fish (Ivlev 1939; Fry 1947; Winberg 1956; Brett 
1971). This foundation, and the growing interest in bioenerget-
ics modeling applications to research and management, sparked 
development of computer software applications that included 
Fish Bioenergetics 1.0 (Hewett and Johnson 1987), Fish Bioen-
ergetics 2.0 (Hewett and Johnson 1992), and Fish Bioenergetics 
3.0 (Figure 1; Hanson et al. 1997). The 1997 release of Fish 
Bioenergetics 3.0 by the Wisconsin Sea Grant Program has been 
tremendously popular among fisheries scientists worldwide, due 
to the sound biological foundation of bioenergetics models, the 
user-friendly environment of the application, and the relatively 
low cost of the software (Hanson et al. 1997). Since its release, 
Fish Bioenergetics 3.0 has been cited over 600 times in the sci-
entific literature (Google Scholar Citations).

Although the modeling approach offered by Fish Bioen-
ergetics 3.0 remains popular, the software is 20 years old and 
out of date with regards to new information and computer tech-
nologies. That version, for example, is a 32-bit program that is 
incompatible with newer 64-bit Microsoft Windows operating 
systems (and it was never compatible with non-Windows op-
erating systems). In addition, a number of long-standing bugs 
in the program have been recognized (Madenjian et al. 2012; 
Canale and Breck 2013) and needed to be corrected in future 
versions. Most important, prior applications were not amenable 
to user modifications or additions, a commonly noted limita-
tion (Hartman and Hayward 2007). The new version presented 
here assures that bioenergetics modeling will continue to be an 
accessible, user-friendly tool for addressing contemporary fish-
eries questions. The purpose of this article is to provide an over-
view of Fish Bioenergetics 4.0, a newly developed modeling 
application that (1) incorporates new species models; (2) cor-
rects known bugs; (3) offers an adaptable, user-friendly working 
environment; and (4) updates the user’s guide.
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FISH BIOENERGETICS 4.0
R-Based Application

The popularity and widespread use of bioenergetics modeling 
was linked, in no small part, to the availability and user-friendly 
attributes of previous software versions. The graphical user inter-
face of Fish Bioenergetics 3.0 allowed users to easily navigate the 
modeling environment. However, because Fish Bioenergetics 3.0 
was developed as a compiled program (i.e., C++), users were un-
able to access the code to fix bugs, customize analyses, or address 
other program issues. In contrast, Fish Bioenergetics 4.0 (hereaf-
ter referred to as FB4) uses an R-based analytical approach that 
consists of a graphical user interface application (Shiny by RStu-
dio; Chang et al. 2015) and an independent modeling package to 
be used in the R computing environment (R Core Team 2015). 
The programming approach of FB4 enables timely updates and 
bug fixes and can rely on feedback from users to continuously 
improve the application. We also note that the error in the algo-
rithm to balance the fish’s daily energy budget found in Fish Bio-
energetics 3.0 (see Madenjian et al. [2012] and Canale and Breck 
[2013] for more details) has been corrected in FB4. Users will 
also be able to formulate and incorporate modifications such as 
habitat-dependent functions (e.g., dissolved oxygen, salinity) and 
submodels that are not part of the default package and can easily 
add parameter sets for additional species without modifying the R 
code. Because the core model code is accessible to users, it can be 
incorporated as a module in larger models if desired.

Our goal in developing FB4 was to provide a user-friendly, 
menu-driven environment for bioenergetics modeling that ap-
peals to users with little or no experience in R programming. 
During development of FB4, we conserved many aspects of the 
previous version (Fish Bioenergetics 3.0) while adding features 
that improved efficiency and ease of working from the user inter-
face. It is our hope that advances in the new modeling platform 

will attract a broad range of users while facilitating continued use 
of bioenergetics modeling to address ecological and management 
questions.

Open Access
FB4 is free, open-access software that is available for down-

load at fishbioenergetics.org and on the Fisheries Information 
and Technology Section website of the American Fisheries So-
ciety (www.fishdata.org/software). Once downloaded, FB4 offers 
users the ability to run bioenergetics simulations on a personal 
computer without access to the Internet. In addition to program 
files, instructions for Getting Started, as well as an updated User’s 
Guide are available for download on these websites.

Updated Species Models
Bioenergetics models are now available for a wide range of 

freshwater and marine fish species, as well as for several aquatic 
invertebrate species (Table 1). The number of published bioener-
getics models has increased appreciably from five models cover-
ing three species in the late 1970s to 105 models covering 73 
species in 2017 (Figure 2).  In addition, a number of studies have 
been published that provide revisions of alternative formulations 
for previously existing models (Table 1).

Working Environment
The user interface allows users to manage initial settings for 

a model simulation, review input data, and view and download 
simulation output. Once a species is selected from the drop-down 
list on the Initial Settings page, the parameter set for that model is 
displayed (Figure 3). After the user specifies the initial and final 
day of the simulation and starting weight of the fish, he or she can 
choose among several options for the type of simulation to run 
the following:

Figure 1. User’s guide cover pages for previously developed Fish Bioenergetics software. (A) Fish Bioenergetics 1 (Hewett and 
Johnson 1987), (B) Fish Bioenergetics 2 (Hewett and Johnson 1992), (C) Fish Bioenergetics 3.0 (Hanson et al. 1997), and (D) Fish 
Bioenergetics 4.0.
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Table 1. List of models included in Fish Bioenergetics 4.0 (FB4). Bioenergetics models that are new to FB4 are indicated by an asterisk (*). † de-

notes new or revised versions of existing models found in previous versions of Fish Bioenergetics software. A = adult, J = juvenile, L = larvae.

Family Species

Number of 
models; 
life stages References

Acipenseridae Pallid Sturgeon Scaphirhynchus albus* 2; L, J Chipps et al. (2009); Heironimus (2015)

Cambaridae Rusty Crayfish Orconectes rusticus* 1; A Roth et al. (2006)

Centrarchidae Largemouth Bass Micropterus salmoides 1; A Rice et al. (1983)

Smallmouth Bass Micropterus dolomieui 3; J, A Shuter and Post (1990); Whitledge et al. (2003)†

White Crappie Pomoxis annularis* 1; A Zweifel (2000); Bajer et al. (2004)

Bluegill Lepomis macrochirus 2; J, A Kitchell et al. (1974)

Sacramento Perch Archoplites interruptus* 1; A Bliesner (2005)

Channidae Snakehead Channa striatus* 1; J Qin et al. (1997)

Cichlidae Blue Tilapia Oreochromis aureus 1; A Nitithamyong (1988)

Clupeidae Alewife Alosa pseudoharengus

Atlantic Menhaden Brevoortia tyrannus*

4; L, J, A

1;L

Stewart and Binkowski (1986); Klumb et al. (2003)†

Rippetoe (1993); Annis et al. (2011)†

Baltic Herring Clupea harengus* 1; J Arrhenius (1998); Rudstam (1988); Blaxter (1960)

Gizzard Shad Dorosoma cepedianum* 1; J, A Sebring (2002)

Herring Clupea harengus 2; J, A Rudstam (1988)

Cottidae Prickly Sculpin Cottus asper* 1; J, A Moss (2001)

Cyprinidae Bighead Carp Hypophthalmichthys nobilis* 1; J, A Cooke and Hill (2010)

Dace Phoxinus spp. 1; J,A He (1986); Trudel and Boisclair (1994)

Fathead Minnow Pimephales pomelas* 1; J, A Duffy (1998)

Humpback Chub Gila cypha* 1; J, A Petersen and Paukert (2005)

Northern Pikeminnow Ptychocheilus oregonensis* 1; J, A Petersen and Ward (1999)

Red River Shiner Notropis bairdi* 1; A Offill (2003)

Roach Rutilus rutilus* 1; A Karjalainen et al. (1997)

Silver Carp Hypophthalmichthys molitrix* 1; J, A Cooke and Hill (2010)

Dreissenidae Zebra Mussel Dreissena polymorpha* 1; A Schneider (1992)

Engraulidae Bay Anchovy Anchoa mitchilli* 1; J, A Luo and Brandt (1993)

European Anchovy Engraulis encrasicolus* 3; L, J, A Politikos et al. (2011) 

Esocidae Muskellunge Esox masquinongy 1; A Bevelhimer et al. (1985)

Northern Pike Esox lucius 1; A Bevelhimer et al. (1985)

Tiger Muskellunge Esox lucius x E. masquinongy 2; J, A Bevelhimer et al. (1985); Schoenebeck et al. (2008)†

Fundulidae California Killifish Fundulus parvipinnis* 1; J, A Madon et al. (2001) 

Plains Killifish Fundulus zebrinus* 1; J, A Offill (2003)

Gadidae Atlantic Cod Gadus morhua* 2; J, A Hansson et al. (1996); Mateo (2007)

Walleye Pollock Theragra chalcogramma 5; J, A Buckley and Livingston (1994)

Gasterosteidae Threespine Stickleback Gasterosteus aculeatus* 1; J, A Hovel et al. (2015)

Gobiidae Round Goby Neogobius melanostomus* 1; J, A Lee and Johnson (2005)

Hexagrammidae Lingcod Ophiodon elongatus* 1; A Beaudreau and Essington (2009)

Latidae Nile Perch Lates niloticus 1; J Kitchell et al. (1997)

Lotidae Burbot Lota lota* 1; J, A Pääkkönen et al. (2003)

Moronidae Striped Bass Morone saxatilis 5; L, J, A Hartman and Brandt (1995); Johnson (1995)

White Bass Morone chrysops* 1; L Johnson (1995)

Mysidae Mysis Mysis diluviana 1; A Rudstam (1989); Rudstam et al. (1999)†

Osmeridae European Smelt Osmerus eperlanus* 1; L, J Karjalainen et al. (1997)

Rainbow Smelt Osmerus mordax 3; L, J, A Lantry and Stewart (1993)

Paralichthyidae Southern Flounder Paralichthys lethostigma* 1; J, A Burke and Rice (2002)

Percidae Eurasian Perch Perca fluviatilis* 3; L, J, A Karas and Thoresson (1992); Karjalainen et al. (1997)

Ruffe Gymnocephalus cernuus* 1; J, A Tarvainen et al. (2008)

Saugeye Sander vitreus × S. Canadensis* 1; A Zweifel et al. (2010)
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Family Species

Number of 
models; 
life stages References

Walleye Sander vitreus 2; L, J, A Kitchell et al. (1977); Madon and Culver (1993)

Yellow Perch Perca flavescens 3; L, J, A Kitchell et al. (1977); Post (1990)

Zander Zander zander* 1; A Keskinen et al. (2008)

Petromyzontidae Sea Lamprey Petromyzon marinus 1; A Kitchell and Breck (1980)

Poeciliidae Western Mosquitofish Gambusia affinis* 1; J, A Chipps and Wahl (2004)

Pomatomidae Bluefish Pomatomus saltatrix 1; L, J, A Hartman and Brandt (1995)

Salmonidae Baikal Grayling Thymallus arcticus baicalensis* 1; J, A Hartman and Jensen (2017)

Bloater Chub Coregonus hoyi 1; A Rudstam et al. (1994)

Brook Trout Salvelinus fontinalis* 1; J, A Hartman and Sweka (2003); Hartman and Cox (2008)

Brown Trout Salmo trutta* 1; J, A Dieterman et al. (2004)

Bull Trout Salvelinus confluentus* 1; J, A Mesa et al. (2013) 

Chinook Salmon Oncorhynchus tshawytscha 1; J, A Stewart and Ibarra (1991); Plumb and Moffitt (2015)

Coho Salmon Oncorhynchus kisutch 1; J, A Stewart and Ibarra (1991)

Cutthroat Trout Oncorhynchus claki 1; J, A Beauchamp et al. (1995)

Generalized coregonid Coregonus spp. 1; A Rudstam et al. (1994)

European Whitefish Coregonus lavaretus* 1; L, J Huuskonen et al. (1998)

Lake Trout Salvelinus namaycush 1; A Stewart et al. (1983)

Lake Whitefish Coregonus clupeaformis* 1; A Madenjian et al. (2006, 2013)

Lenok Brachymystax lenok* 1; A Hartman and Jensen (2017)

Pink Salmon Oncorhynchus gorbuscha 1; J, A Beauchamp et al. (1989) 

Rainbow Trout Oncorhynchus mykiss* 2; J, A Railsback and Rose (1999); Tyler and Bolduc (2008)

Sockeye Salmon Oncorhynchus nerka 1; J, A Beauchamp et al. (1989)

Steelhead Oncorhynchus mykiss 1; J, A Rand et al. (1993)

Sciaenidae

Vendace Coregonus albula*

Weakfish Cynoscion regalis

1; L, J

2; L,J,A

Karjalainen et al. (1997)

Hartman and Brandt (1995)

Scomberesocidae Pacific Saury Cololabis saira* 2; J, A Ito et al. (2004); Mukai et al. (2007)

Scorpaenidae Indo-Pacific lionfish Sander lucioperca 1; J, A Cerino et al. (2013)

Table 1. (Continued).

Figure 2. Cumulative number of published bioenergetics 
models, 1974–2017, representing 70 fish species (some at 
multiple life stages) and three invertebrate species.

1. fit to final weight, where the user specifies the mass in grams 
of wet weight the fish will reach at the end of the simulation; 
FB4 uses this information to iteratively calculate a P value 

(proportion of maximum consumption, i.e., Cmax) that will 
allow for the simulated final weight to equal the input final 
weight; 

2. fit to cumulative food consumption, where the user specifies 
the total amount of food (in grams of wet weight of prey) 
that will be consumed by an individual fish during the simu-
lation; FB4 uses this information to iteratively calculate a P 

value (proportion of Cmax) that will allow for the simulated 
final cumulative consumption to equal the input final cumu-
lative consumption; 

3. fit to a fixed ration, where the user specifies a constant mass 
of prey eaten by an individual fish on each day of the simula-
tion; 

4. fit to ration, where the user specifies a constant percentage of 
predator body weight eaten by an individual fish on each day 
of the simulation; or 

5. fit to a proportion of Cmax (P value), to calculate consump-
tion that will be applied to each day of the simulation.
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Figure 3. User interface for FB4 showing Initial Settings page. Parameter values are shown at right for the species se-
lected by the user, providing original reference(s) and values used in the bioenergetics model.
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The file structure of FB4 is organized into three primary fold-
ers: a “Fish Bioenergetics” (or user defined) main folder and 
two subfolders,“Main Inputs” and “Sub-models.” All user input 
(and output) data are saved as comma-delimited (.csv) files that 
can be easily modified in Microsoft Excel or other spreadsheet 
programs. Species-specific bioenergetics parameter estimates 
derived from published models are contained in a file listed in 
the main folder. The Main Inputs folder contains files of input 
data for diet proportions, proportion of indigestible prey, predator 
energy density, prey energy density, and water temperatures. The 
content of these files can be visualized instantly in a plot format, 

which allows the user to quickly verify whether data were entered 
correctly (Figure 4).

The Sub-models page has options to simulate a population, 
incorporate spawning losses, or track contaminant uptake or nu-
trient regeneration by fishes. As for the main inputs, contents of 
data files for these submodels (e.g., mortality rates, prey contami-
nant concentrations) can be visualized instantly for verification.

Once a simulation is run, users can select from a large number 
of output variables to be visualized in plot format or tabulated 
in spreadsheet format before being downloaded as a .csv file for 
further analyses (Figure 5).

Figure 4. Example of temperature (top panel) and diet proportion (bottom panel) input data in 
FB4. The Input Files page allows users to quickly visualize their input data to ensure accuracy prior 
to performing a simulation. Note: Data are linearly interpolated for missing data points.



FISHERIES | www.fisheries.org   593

Figure 5.  Tabulated (top panel) and plotted (bottom panel) output options available in FB4. The tabulated output can be down-
loaded as a .csv file using the “Download Table” button. Note that the output variables shown here are only a small subset of 
those available.

USER’S GUIDE

The user’s guide for FB4 is organized around core concepts 
with an emphasis on topics such as the “Science of Bioenerget-
ics” and “Learning the Software.” In addition, we added sections 
describing “Model Limitations” and “Case Study Examples” — 
along with other topics applicable to a variety of modeling sce-
narios.

Bioenergetics Community
Last, a listserv has been created to facilitate the exchange of 

ideas, announce updates, and report any issues associated with 
FB4. If you wish to participate in this growing community, please 
send an e-mail to fish-bioen4@googlegroups.com to be added to 
the list.

Model Verification
We have used several approaches to ensure that the applica-

tion functions as intended and accurately reflects specific models 
as presented in the literature. Equations and parameters for each 
model were thoroughly reviewed by the authors to assure that 
they were consistent with the information provided in the origi-
nal source publication(s). Model outputs from FB4 were com-
pared with those generated using the same models coded in Excel 
spreadsheets. Functionality of the program was also tested exten-
sively by participants in a graduate-level bioenergetics modeling 
course (taught at North Carolina State University by J. A. Rice) 
and by participants in two FB4 training workshops held at the 
76th Midwest Fish and Wildlife Conference and the 146th Annual 
Meeting of the American Fisheries Society.
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User Responsibilities
Although FB4 is intended to facilitate bioenergetics modeling 

applications without extensive coding by the user, we emphasize 
that it is the user’s responsibility to understand the assumptions 
and limitations of the model being used and to assure that it is be-
ing applied appropriately for the question being asked. We have 
made every effort to ensure that the models in FB4 accurately 
reflect their original sources, but the fact remains that there is 
substantial variation among models in the rigor with which they 
were derived. The onus is on the user to understand how the 
model works and to examine the original model publication(s) to 
learn how it was developed and what assumptions it relies upon 
(e.g., parameters borrowed from other species models; Chipps 
and Wahl 2008). Are the assumptions inherent in the original 
model application suitable for the intended use? Was the original 
model developed for the size and age range of fish and the range 
of environmental conditions (e.g., temperature) to be modeled? 
Are the most appropriate energy densities being used for preda-
tors and prey? How will errors or uncertainties in the model or 
input data affect interpretation of results for the questions being 
asked? Have questions or concerns been raised in the literature 
regarding this model and, if so, what are the implications for the 
intended application? With adequate attention to these kinds of 
questions, FB4 will be a powerful and informative tool for fisher-
ies researchers and managers.
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