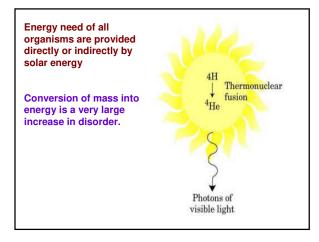
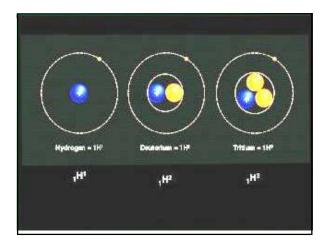


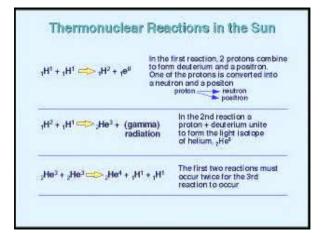
	Metabolism = Chemistry of Life
6 th year	of my teaching metabolism.
What othe	er people thought of metabolism course?
	Grad. Students, faculties about their experience with m Course in 2001.
90%	It is too dry, and boring, too many chemical structures to remember
5%	It is lot of chemistry, but if you like chemistry , it is OK
5%	It is dry but it was good course
What ca	n l do?
Make it l	ess dry, less boring or make it wet, interesting and exciting
	I will try my best but need your participation.
	•, •

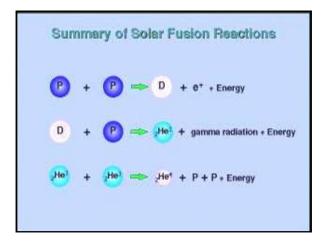
Bioenergetics of life

Thermodynamics of energy conversions in living systems


Free energy from ATP and other high energy compound

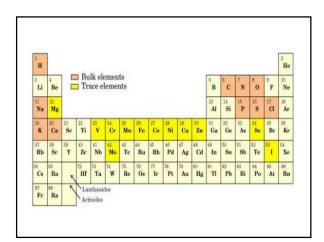

Free energy from electron transfer from one molecule to other i.e. from oxidation reduction reactions


Metabolic pathways Organic reaction mechanisms


Experimental approaches in the study of metabolism

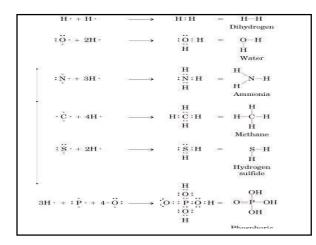
Solid:	Cold	Ice Crystal Liquid:
Liquid:	Warm	Water
Gas:	Hot	Steam
Plasma:	Very hot	Nuclei and electrons separated
'asma:	very not	
Hydrogen e	xists as a pro	oton in plasma state

Energy and Mass relationship: E = mc ² m= mass and c = velocity of light	Different forms of energy: Mechanical (kinetic and potential) Light, sound, heat, electrical (including magnetic) and chemical energy
Nuclear reactions involve mass conversions into energy Example: 4 H = He Formation of helium from four hydrogen atoms is one of the most common nuclear reaction in solar plasma. 4X1.008= 4.032, whereas atomic mass of He is 4.003	Conversion of mass and energy Inter-conversion of subatomic particle. Various energy forms: Light, electromagnetic, Kinetic, heat, potential, sound and wave
Net loss of mass = 0.029 Daltons/He nuclei formation, this mass is converted into huge amount of energy. 1 Dalton = 1.66X10 ⁻²⁴ gm or 1.66X10 ⁻²⁷ Kg	Interactions between atoms through electrons in outer orbit of atoms at various temperature, pressure and pH and solvent condition.
E = 0.029 X 1.66X10 ⁻²⁷ Kg X (3X10 ⁸ m/sec) ² = 4.54X10 ⁻¹² Joules/ He 1 Mole of He is 4 gm, and it contains 6.023X10 ²³ atoms 1 mole He (4gm) formation will produce (4.54 X10 ⁻¹²).(6.023X10 ²³) = 2.7X10 ¹² Joules	Interaction between macromolecules, atoms in similar way as in chemistry except at normal temperature, pressure, around neutral pH and strictly in aqueous Media.


electrical (including magnetic) and chemical ass and energy of subatomic particle. **Physics** orms: Light, electromagnetic, ential, sound and wave veen atoms through electrons Chemistry toms at various temperature, and solvent condition. en macromolecules, way as in chemistry except |Biochemistry ature, pressure, H and strictly in aqueous Media.

First law of thermodynamics:

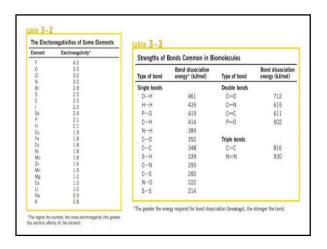
For any chemical or physical change the total energy of the universe remains constant, in other words, energy may change form, or transported from one place to other but it cannot be destroyed or created.

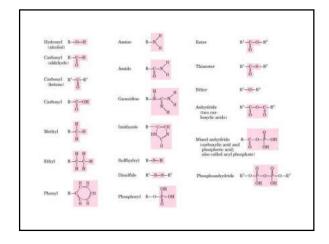

Second law of thermodynamics:

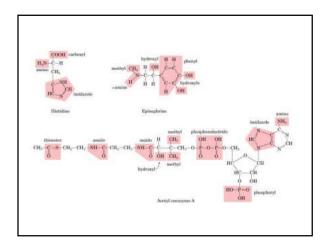
Any spontaneous chemical or physical change is always accompanied by increase in the disorder of the universe. In other words disorder or entropy of the universe increases in all natural processes.

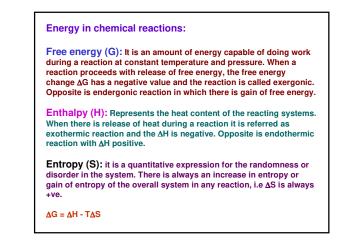
70% of to The dry v	a human with bod tal body weight is veight of the 60 Kg	water, i.e 42 kg w body = 18 kg	vater
Element	% of dry wt dry	y wt (kg)	Trace Elements
С	61.7	11.0	В
N	11.0	2.0	F
0	9.3	1.6	Si
н	5.7	1.0	v
Ca	5.0	0.9	Cr
Р	3.3	0.6	Mn
K	1.3	0.23	Fe
s	1.0	0.18	Со
Cl	0.7	0.12	Cu
Na	0.7	0.12	Zn
Mg	0.3	0.054	Se, Mo, Sn I

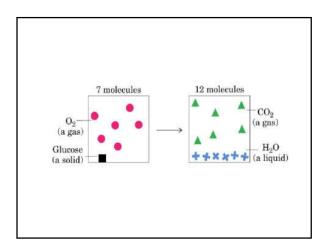
Atom	Number of unpaired electrons (in red)	Number of electrons ir complete outer shell
Н·	1	2
:o·	2	8
: N	3	8
٠ċ٠	4	8
: s ·	2	8
: P ·	з	8




Most of the chemistry in living system is the result of interplay of electrons in the outer orbit of H, C, N, O, P and S.


Electro negativity: It is the tendency of an atom to attract an electron. F is the most electronegative element, but in biological system O is the most electronegative atom.


Many of the reactions in biological systems are catalyzed by enzymes and involve the lone pair of electron on N, O and S and P.


In many complex reactions a particular group of atoms (as part of compounds) are actively involved in the reactions. The are called functional groups.

Catabolisn

Ampholia

FAD

ATP NADH NADPH FADH₂

Chen

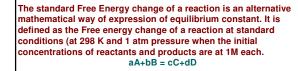
nergy-

CO₂ H₂O NH

Precursor

Sugars Fatty acids

iergy


nutrients

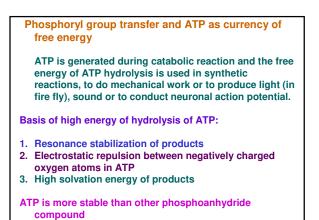
Carbohydrates

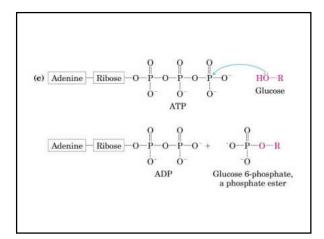
Cell

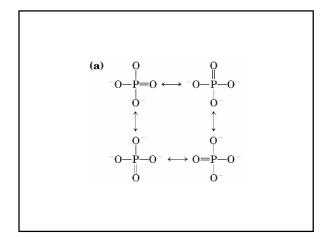
delinin

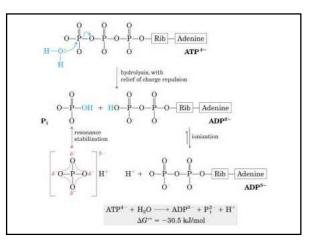
Lipids Nuclei Cells are isothermal systems i.e. they function at constant temperature and pressure. They can only use the free energy to do the work unlike other systems which can use heat released in system to do work (e.g. engines). Plants acquire free energy from absorbed sun light, and synthesize nutrient. Both plants and heterotropic cells use this nutrients and transform the free energy in nutrient into ATP or other energy-rich compound. This process is called catabolism. The free energy stored in energy-rich compounds is used by the cell to synthesize various compound and ingredients and this process is called anabolism.

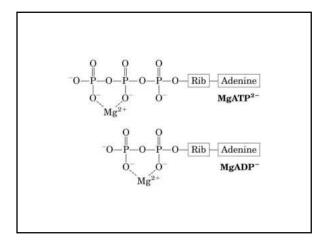
equilibrium constant K_{eq} = [C]^c[D]^d/[A]^a[B]^b

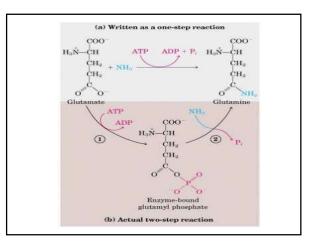

$$\Delta G'^{\circ} = -RT \ln K'_{
m eq}$$

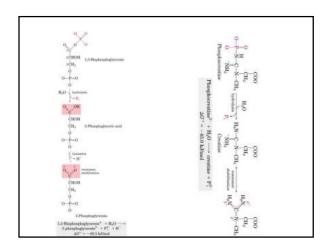

Actual free energy change depends on reactants and product concentration

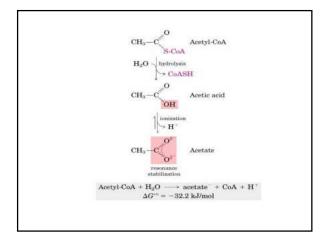

$$\Delta G = \Delta G'^{\circ} + RT \ln \frac{[\mathbf{C}][\mathbf{D}]}{[\mathbf{A}][\mathbf{B}]}$$

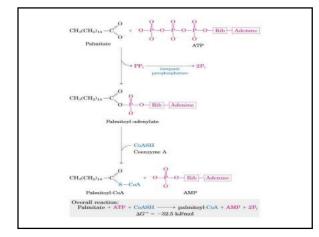

stantard Free-Energy Granges or Some Chemical Reac	tions at pH 7.0 and 25	°C (298 K)	table 14		
Reaction type	(AJYWI)	(Ac all two)	Relations	ship between the s and Standard	Equilibrium
Hydrolysis naactions			Changes	of Chemical Rea	actions
Acat artyphiae	3513	222			46.
Acatic artightum + H_0+ 2 acatum ACP + H_0+ ACP + H	-#1.1 -#0.5	- 21.6	<i>n</i> ;,	(si/mol)	(kcal/mol/T
$ATP = H_0 T \longrightarrow AMP + PP$	- 80.5	- 10.7			
PP: + H.D+ 2P.	-19.2	-4.6	1.02	-17.1	-4.1
LIDF glucose +H ₂ D+ UMP + glucose 3-phosphale	-43.0	- 10.3	105	11.4	2.7
Edura			101	-5.7	-1.4
Ethyl atotato + H,D attoriet + acetate Glacose 6 ofesphate + H,D attories + P	-35.5	-4.7		3.0	0.0
	-13.8	-3.5	10 -	5.7	1.4
Accides and populates Charanima = 19.0	-14.2	-3.4	10.5	11.4	2.7
Giversitycre + H.O 2 store	-9.2	-22	10-4	17.1	4.1
Der etadan	100		10 4	22.8	5.5
Maltime + m/2+ 2 glacose-	-18.5	-3.7	10-8	29.5	6.8
Lactime - H,O glutoite - galactime	-10.9	-3.8	10.15	34.2	8.2
Reassangerworts					
Guine L propriete	-7.5	-1.7		iss and ki riceles are used throughout this	
Flaction &-phosphale	-17	-0.4	sind net e	105.55° \31.6 hk	i trainier ner mele.
Diminution of water				fore included values this table and in Tabl	
Marate	3.3	2.0		joules to a locale has	
Oxidations with molecular oxygen					
Blacose = #0,+ #00, + 6H,0	-2,840	- 686			
Palmitate + 290,+ 3800, - 164,0	-9.770	-2.338			

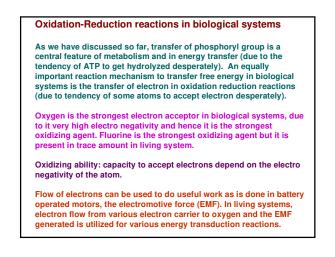

$Sum: A \longrightarrow C \qquad \Delta G_1^{**} + \Delta G_2^{**}$ $u + Pi = Glu \ 6P + H_2O \qquad \delta G = 13.8 \text{ kJ/mol}$ $P + H_2O = ADP + Pi \qquad \delta G = -30.5 \text{ kJ/mol}$	Sum: $A \longrightarrow C$ $\Delta G_1^{"} + \Delta G_2^{"}$ $u + Pi = Glu 6P + H_2O$ $\delta G = 13.8 kJ/mol$ $P + H_2O = ADP + Pi$ $\delta G = -30.5 kJ/mol$	$(1) \qquad A \longrightarrow B \qquad \Delta G_1^{"}$	
$lu + Pi = Glu 6P + H_2O \qquad \delta G = 13.8 \text{ kJ/mol}$ $IP + H_2O = ADP + Pi \qquad \delta G = -30.5 \text{ kJ/mol}$	$lu + Pi = Glu 6P + H_2O \qquad \delta G = 13.8 \text{ kJ/mol}$ $IP + H_2O = ADP + Pi \qquad \delta G = -30.5 \text{ kJ/mol}$	(2) $\mathbf{B} \longrightarrow \mathbf{C} \qquad \Delta G_2^{\circ}$	
$\mathbf{IP} + \mathbf{H}_2\mathbf{O} = \mathbf{ADP} + \mathbf{Pi}$ $\mathbf{\delta G} = -30.5 \text{ kJ/mol}$	$TP + H_2O = ADP + Pi$ $\delta G = -30.5 \text{ kJ/mol}$	Sum: A \longrightarrow C ΔG_1° +	ΔG_2^{\sim}
$\mathbf{A} + \mathbf{ATP} = \mathbf{ADP} + \mathbf{Glu6P}$ $\mathbf{\delta}\mathbf{G} = -16.7 \text{ kJ/mol}$	ATD ADD CL-CD SCI 1(71-1/	2	
	$\mathbf{I} + \mathbf{A} \mathbf{I} \mathbf{P} = \mathbf{A} \mathbf{D} \mathbf{P} + \mathbf{G} \mathbf{I} \mathbf{U} \mathbf{O} \mathbf{P} \qquad \mathbf{O} \mathbf{G} = -\mathbf{I} \mathbf{O} \cdot / \mathbf{K} \mathbf{J} / \mathbf{M} \mathbf{O} \mathbf{I}$	$\mathbf{A} + \mathbf{ATP} = \mathbf{ADP} + \mathbf{Glu6P}$ $\delta \mathbf{G} = -16.$	7 kJ/mol

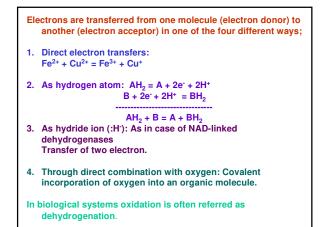


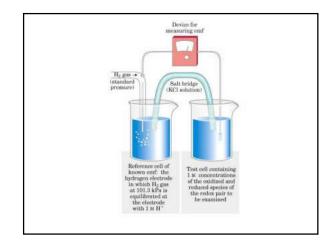




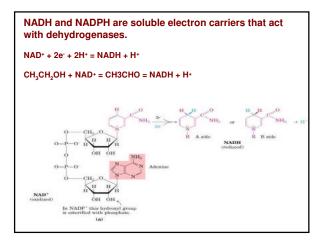


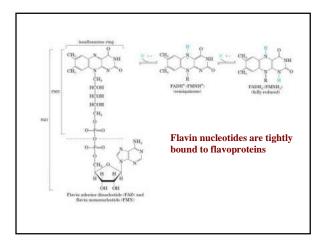


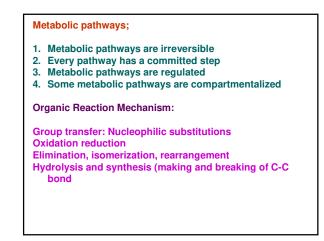


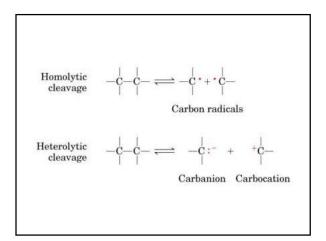


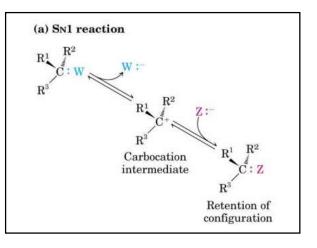
Methane	H:C:H		Acetaldehyde	н	
Ethane (alkane)	H H H H	7	(aldehyde)	HICIC	3
Ethene (alkene)	$H_{H}^{H} \subset H_{C} > H_{H}^{H}$				
Ethanol (alcohol)	н: В. В. В. В. Н.	5	Acetone (ketone)	H:C:C:C:H	2
Acetylene	настасти	0	(Mercoure)	нн	
Pormaldebyde	H H	4	Formic acid	,õt	
Acctaldebyde Caldebyde)	HIGICSH	а	(carboxylic acid)	H:CO H	2
Acetone: (ketone)	н:ё.е.ё.н	2	Carbon monoxide	1011101	2
Formic acid Cearboxylic acidD	HICO	2		н Б-	
Carbon monoxide	1011101	2	Acetic acid (carboxylic acid)	HEEC	1
Acetic acid (ourboxylic acid)	на	1		п	
Carbon dioxide	(oucus)	0	Carbon dioxide	(0.1.0.1.0)	0
	Contractor and an a		e	d (. e. 1
lation states of ized (carbon die	Carbon in various c	ompounds;	from fully reduce	d (methane0 to) fu

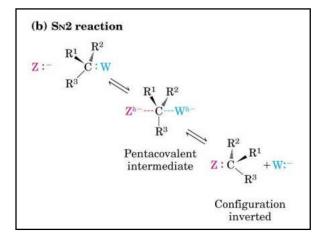


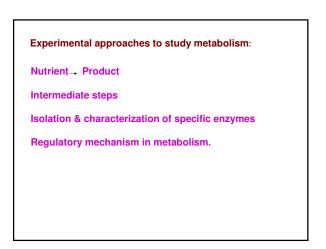

Standard reduction potential: (E°)It is the electric potential generated by a redox reaction against
hydrogen electrode, when the concentration of reduced and
oxidized species are at 1 M concentration.Reduction potential of a half-cell depends on the the activity of
reduced and oxidized species which is approximated by their
concentrations.Nernst Equation:
 $E = E^{\circ} + RT/nf ln [electron acceptor]/[electron donor]
N= number of electrons transferred, f= Faraday's constant.
At 25 °C, the equation is;
<math>E = E^{\circ} + 0.026V/n ln [electron acceptor]/[electron donor]$


Standard reduction potential is used for free energy change calculation as follows: ΔG = -nf ΔE or ΔG° = -nf ΔE°




Half-reaction	E^{\sim} (6)
$\frac{1}{2}\Omega_2 + 2H^* = 2\pi^* \longrightarrow H_2\Omega$	0.818
Fe ² + e ⁻ > Fe ²⁺	0.771
$NO_2^ 2H^- + 2e^- \longrightarrow NO_2^- + F_2O_2^-$	0.421
Cylochrome $f(Fe^{2}) + e \longrightarrow cylochrome f(Fe^{2})$	0.365
$Fe(CN)_{i}^{2}$ (tenicyaride) $i \in \longrightarrow Fe(CN)_{i}^{2}$	0.36
Cylochrome $s_1(Fe^{2n}) + s^n \longrightarrow cylochrome s_2(Fe^{2n})$	0.35
$0_2 + 2H^+ - 2\sigma^- \rightarrow H_2G_2$	0.295
Cytochrome $p(Fe^{i_1}) + e^{i_2} \longrightarrow cytochrome p(Fe^{i_1})$	0.29
Cytochrome c (Fe ³) + $c \longrightarrow$ cytochrome c (Fe ³)	0.254
Cylochrome $c_1(Fe^{2n}) + e_1 \longrightarrow cylochrome c_1(Fe^{2n})$	0.22
Cylochrome $h(Fe^{2n}) = a \longrightarrow cylochrome h(Fe^{2n})$	0.077
Ubiguinges + 2H* - 2#* - y ubiguingl + Hz	0.045
$1 \text{ unerage}^{2+} + 2 1^{+} - 2e^{-} \rightarrow \text{subtinue}^{2+}$	0.001
$2H_{-} + 2e_{-} \longrightarrow H_{-}(a)$ standard conditions, pH C	0.000
Crossny -CoA - 2H + 2c	-0.015
0 values of a left $+ 2H + 2\pi \longrightarrow 100 \text{ m}^2$	0.165
Pyrovate" + 2H* - 2e" - 5 lsc ate"	-0.195
$extracted et with + 211^{+} - 2e^{-} is either or$	-0.197
$FAD = 2H + 2e \longrightarrow FDDH_{e}$	-0.219
G utathione + $2H' = 2e^{-} \longrightarrow 2$ reduced glutathione	-0.23
\$ 1 2H' 2H	0.243
Lipsic soid 2H* + 2e*> dihedrolipsic soid	0.29
B6D* - 11° + 2€° → N5C11	-0.320
$NAEP' = H' = 2\sigma \longrightarrow NAEPH$	-0.324
Aceteacetate $= 2H + 2e \longrightarrow \beta$ -hydroxybutwate	-0.346
α -Setog uterste + $\Omega \Omega_2 = 2H + 2e \longrightarrow$ isocitare.	0.35
	0.111
$2H^+ + 2e^- \longrightarrow H_s$ (al. p.H. 7)	





METABOLIC INHIBITORS

Glucose

G6P Iodoacetamide

Fructose6p Fr.1.6.biphosphate GAP+DHAP

GENETIC DEFECTS: Mutation in a particular gene

Defective protein enzyme

Blockage of metabolic reaction

Accumulation of an intermediate

