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Abstract— Objective: We present magnetomyograms (MMG) of TMS-evoked movement in a 

human hand, together with a simultaneous surface electromyograph (EMG) and 

electroencephalograph (EEG) data. Approach: We combined TMS with non-contact magnetic 

detection of TMS-evoked muscle activity in peripheral limbs to explore a new diagnostic 

modality that enhances the utility of TMS as a clinical tool by leveraging technological 

advances in magnetometry. We recorded measurements in a regular hospital room using an 

array of optically pumped magnetometers (OPM) inside a portable shield that encompasses 

only the forearm and hand of the subject. Main Results: The biomagnetic signals recorded in 

the MMG provide detailed spatial and temporal information that is complementary to that of 

the electric signal channels. Moreover, we identify features in the magnetic recording beyond 

those of the EMG. Significance: These results validate the viability of MMG recording with a 

compact OPM based setup in small-sized magnetic shielding, and provide proof-of-principle 

for a non-contact data channel for detection and analysis of TMS-evoked muscle activity from 

peripheral limbs.  

 

I. INTRODUCTION 

The central nervous system of the human body forms a critical signaling network that controls 

over 200 muscles1. Developing new technologies that aid in understanding and measuring the 

innervation patterns and muscle activity controlled by this network is crucial for the 

advancement of research, diagnosis and treatment of motor-system diseases like Parkinson’s 
disease and amyotrophic lateral sclerosis (ALS)2,3. One such technology is transcranial 

magnetic stimulation (TMS), which has recently gained widespread use for research and 

diagnosis of various neuropsychiatric disorders4–7. In TMS, a strong magnetic field pulse is 

applied to a specific cortical area. When applied to the motor cortex, TMS results in an evoked 

muscle response in the form of a ‘twitch’8–10. TMS offers a safe, controlled, and non-invasive 

method to investigate the entire motor pathway from motor cortex to muscle, making it an ideal 

platform for studying central motor conduction activity11-13. The TMS-evoked muscle and 

nerve responses in descending motor waves can be recorded with electrophysiological 

measurement techniques such as electromyography14 (EMG), which is considered a gold-

standard tool. The electromyography signal from a muscle stimulated via TMS is known as a 

motor evoked potential (MEP)12. Magnetic signals accompany electrophysiological signals and 

can provide clinically relevant information about innervation and muscle activity that is 

spatially and temporally well resolved15,16. A major challenge is to combine the utility of TMS 

with the stringent operational requirements of state-of-the-art magnetometers. Here, we 



overcome those challenges and record magnetic fields from TMS-evoked muscle activity 

acquired in a regular hospital room using optically pumped magnetometers and small-sized 

magnetic shielding. 

 

Biomagnetic measurements can offer complementary data in TMS-EMG experiments aiming 

to measure evoked muscle activity, since a magnetic response will accompany the changing 

electric field. Surface EMG records electrical potential differences that arise due to 

electromagnetic activity associated with so called motor-unit action potentials (MUAPs), which 

are a summation of individual muscle action potentials that propagate along a single contracted 

muscle fiber14.  The surface EMG does not measure the direct action-potential in the muscle, 

but rather the associated ensemble electromagnetic activity that reaches the skin at a specific 

moment in time. Since electric fields in the body are affected by the conductivity of different 

tissues and specific skin conditions, it can be challenging to recover the exact origin of the EMG 

signal without complex and careful electrode placing and analysis of the specific physiological 

conditions17.  

 

Meanwhile, magnetic fields arise from the composite electrical activity within the body and 

thus also require detailed analysis to recover source information. These fields convey 

information from both the primary MUAPs, as well as the secondary propagation of electrical 

activity through the surrounding biomass. Despite this complication, detailed array 

measurements of the field can also be used to locate the primary sources with excellent 

agreement with established EMG localization techniques18. In this manuscript, we refer to the 

recorded magnetic field signal that arises from a MUAP as a motor evoked field (MEF). 

Importantly, since the relative magnetic permeability of human tissue is close to unity, the 

magnetic fields from MUAPs are directly related to the electro-chemical activity within 

muscles, unaffected by specific conditions of the surrounding tissue19. Crucially, they do not 

rely on a sensor-skin connection. Therefore, while electrical and magnetic signals originate 

from a single event, the difference in how they are communicated to a sensor means that they 

can validate each other and provide complementary information about the system under study. 

In combination with TMS, these magnetic signals can elucidate the proper functioning and 

response of the muscular and central nervous systems20.  

 
FIG. 1: Experimental setup. (a) Schematic of a subject's hand within the innermost magnetic 

shield layer. Sensor positions of the magnetometers and electrodes are indicated. Not indicated 



are mounting/supporting elements or wires. (b) Rendering of experimental setup showing 

subject's hand within the innermost magnetic shield layer and outermost shielding layer. 

Optically pumped magnetometer (OPM) positions are shown in red. (c) Schematic of a 

participant's head with a TMS coil positioned above the motor cortex. (d) Control measurement 

to identify magnetic artifacts in sensor output arising from the TMS pulse. When the participant 

moves their head down, the TMS coil does not stimulate the motor cortex, but the magnetic 

artifact at the sensors is the same as in (c). (e) Motor evoked potentials (MEPs) and motor 

evoked fields (MEFs) were recorded from the right first dorsal interosseus (FDI) muscle during 

TMS (ground electrode is on the index finger). The stimulus results in a lateral `twitch' of the 

right index finger. 

 

Since the detection of magnetic fields does not require physical contact, a magnetic 

measurement of muscle activity, or magnetomyography (MMG)21, is a correspondingly non-

contact technique. These aspects make MMG an attractive tool for complementing EMG, since 

magnetic signals can cross-validate electrophysiological measurements by decoupling signal 

strength from changes in systematic experimental conditions, such as electrode-skin contact for 

electrodes and background magnetic field changes in magnetometers. TMS provides ideal 

conditions for collecting data from these different sensing modalities. Because TMS is a 

repeatable and controlled stimulation, measurements can be triggered and averaged with high 

accuracy in timing, improving the signal-to-noise ratio and repeatability of biomagnetic signals. 

As a result, while information about individual trials is diminished, persistent features across 

repetitive stimulations can be analyzed in detail. 

 

Despite the apparent motivations for magneto-physiological measurements, the very small 

signal size (<10 pT) has limited widespread adoption of biomagnetic measurements as a routine 

clinical measurement, since this regime of sensitivity has been limited to SQUIDs22 

(superconducting quantum interference devices), which require cryogenic cooling. As a result, 

while SQUIDs have been for decades used to detect biomagnetic signals15,23–27, including those 

arising from periphery limbs, the associated measurement systems are bulky, expensive, and 

ill-suited to the different geometries of various body parts, limiting these systems’ practical 
utility. Recent developments in atomic magnetometry have led to high-sensitivity devices 

known as optically pumped magnetometers (OPMs)28 that are uncooled, centimeter-scale, and 

relatively low cost – characteristics necessary to make magneto-physiological measurements 

an accessible diagnostic tool. Additionally, OPMs have opportunities and applications in 

wearable compact devices with wide potential outside of clinical use29. For these reasons, 

OPMs have recently generated broad research interest as a viable alternative to SQUIDs in 

measuring weak biomagnetic signals.  

 

Current OPM technology mandates heating the sensor, resulting in surface temperatures of 

around 40oC, and requires the background magnetic field to be below ~50 nT – well below the 

Earth’s magnetic field and typical noise sources (line noise, equipment noise, elevators, cars, 

etc.). To achieve this precondition, previous studies with OPMs have typically employed 

magnetically shielded rooms, which are incompatible with the intense fields produced by TMS.   

 

In this work, we leverage the advances in OPM technology to enhance the diagnostic utility of 

TMS. Several recent studies have shown that OPMs can detect electrically stimulated muscle 

activity in the hand while in a magnetically shielded environment30,31. Our study represents 

several key advances. First, in using TMS, the evoked muscle activity in this study arises from 

signals that originate with magnetic stimulation at the motor cortex, and therefore involves the 

entire motor pathway, in contrast to electrical stimulation of proximal nerves31. Second, we 

incorporate simultaneous electroencephalography (EEG) during measurements, in addition to 



EMG. Thus, we extend magnetic measurements to an established routine to study repetitive 

TMS evoked activity recorded with EEG and EMG32-34. Finally, we achieve the above stated 

goals in a regular hospital examination room, by using a portable magnetic shield that only 

encompasses the arm of the subject. 

 

With this unique setup, we recorded biomagnetic signals with features that complement and are 

validated by EMG measurements, and furthermore, the magnetometers detect signals from parts 

of the hand that were not covered by the EMG electrodes.  

 

 

 
 

FIG. 2: (a)Thermo-plastic hand molds made for each subject to rest their forearm and hand on 

during the measurement. The plastic is molded around an aluminum support for the forearm. 

The mold section for the index finger is widened to allow for evoked motion due to the TMS. 

(b) Hand mold with a hand. Using flexible VELCRO® strips, the whole mold is suspended 

from an aluminum strut that extends into the magnetic shield. (c) Four commercial OPM 

sensors (QuSpin) arranged on a plastic board that is fit to the magnetic shield. (d) View inside 

the innermost shielding layer, with the eight OPMs seen (four more are behind the red tape at 

the top). Subjects place their forearm on the hand mount, which is then maneuvered into this 

magnetic shield. In contrast to a magnetically shielded room typically required for sensitive 

biomagnetic measurements, our setup avoids potentially claustrophobic conditions.  

 

II. METHODS  

A. Subjects 

All measurements were repeated for four subjects in total, between ages 26 and 40, who 

volunteered for the study. All subjects are right-handed and have no somatic diseases or any 

mental or neurological diseases with confirmed diagnoses. Written informed consent in 

accordance with the Declaration of Helsinki was obtained from all subjects before participation 

in this study, which was approved by the Ethics Committee of the State Medical Association of 

Rhineland-Palatinate. Written informed consent was also obtained from all subjects to publish 

data/images relating to the experiment in an online open-access publication. 

 

B. Experimental procedure  

The OPM and EMG electrode configurations within the shield are shown in Figure 1a-b. The 

measurement preparation time, including control measurements, takes less than 30 minutes. 

The biomagnetic signal is recorded with an array of four OPMs below the hand and an 

additional four above the hand, while the EMG and EEG are simultaneously recorded to 

correlate and provide reference for the signals.  

 

For each participant, the three sensing systems (magnetomyography magnetometers, EMG 

surface electrodes, and EEG electrodes) were prepared and tested individually with the data-

acquisition system. The EEG and EMG were recorded using a 256-channel EGI (Electrical 



Geodesics, Inc.) EEG system and synchronized with OPM data using a trigger signal from the 

TMS pulse. The subject’s hand was positioned inside the shield, and the TMS coil was 

positioned over the subject’s left M1 region (Fig. 1c). The stimulation was applied at different 

frequencies 0.5 Hz, 3 Hz, and 9 Hz for a maximum of up to 3 mins. 

 

The TMS pulse results in a ≈1.4 T field on the motor cortex of the participant, which is less 
than a meter away from the EMG and MMG sensor positions. The sensors record a magnetic 

artifact arising from the TMS pulse, which consists of a bi-phasic pulse lasting approximately 

300 μs. To identify and isolate this artifact, a control measurement was performed in which 

each participant moved their head down (Fig. 1d) and data were taken for the same stimulation 

described above. Since the high-intensity and rapidly changing region of the magnetic field 

from the TMS is highly localized, the induced electrical field and resulting brain activity are 

also limited to a small volume. Therefore, the participants’ change in head position results in 

the absence of a discernible evoked effect, but the magnetic artifact (from the TMS pulse) at 

the sensor is the same as in the experimental conditions. For this control measurement, no MEP 

is observed on the EMG, and a lack of finger ‘twitch’ was confirmed using a camera aimed 

through an access port of the shield. These measurements showed that the artifact lasts up to 15 

ms on the averaged OPM signal – longer than the true pulse due to low-pass filtering in the 

sensor hardware. A small timing jitter in the system leads to artifact signal reduction in 

averaging. Since the jitter (<100 μs) is much smaller than the time-scale of signals of interest 

(>1 ms), this effect does not diminish signal amplitudes. 

 

C. Transcranial magnetic stimulation (TMS) 

To administer TMS, a stimulation coil is placed over of the target area of a participant’s scalp, 
and an electrical current running through the coil results in a region of intense magnetic field 

(up to 1.4 T) within the participant’s brain. This pulsed magnetic field induces a secondary 

electrical current within cortical tissue, which, if within the motor cortex, may result in 

muscular activation33. 

 

The Magstim Super Rapid 2 stimulator (Magstim, UK) with a figure-of-eight coil and internal 

wing diameter of 70 mm was used. The TMS pulse had a bi-phasic waveform and was applied 

at the left primary motor cortex (M1) with an intensity of 110% of the subjects resting motor 

threshold (RMT) (Fig. 1c). The RMT was determined as the minimum stimulus intensity 

required to elicit motor evoked potentials of amplitude 50 μV in 5 out of 10 consecutive trials 
at rest in the contralateral first dorsal interosseous (FDI) muscle (Fig. 1e)12. 

 

D. Optically pumped magnetometry in a portable shield 

Detection of biomagnetic signals requires magnetic sensitivities better than 10 pT/√Hz. The 

commercially available OPMs (QuSpin) used in this work can achieve a noise floor of 15 

fT/√Hz with a bandwidth between 1 - 100 Hz. These sensors operate by optically probing the 

zero-field resonance of spin-polarized rubidium atoms, which is highly sensitive to small 

magnetic fields35. Eight OPM sensors were used and each sensor has two magnetically sensitive 

axes, resulting in a total of 16 magnetic sensor channels.  

 

The main drawback of this magnetometry approach is limited dynamic range, requiring a 

magnetically compensated or shielded background environment in order to reach the sensitivity 

limits, especially when considering a magnetically hostile hospital setting. Most previous 

human biomagnetic measurements using OPMs29-31 were conducted in magnetically shielded 

rooms (MSRs) which typically have residual fields of <10 nT, magnetic gradients on the order 

of 1 nT/m36, and enough space to comfortably accommodate a subject. These characteristics 

constitute an appropriate working environment for OPMs, allowing low-noise measurements 



and some freedom to move the sensors by 1-2 cm37. However, MSRs are expensive and not 

portable, which ultimately restricts the OPM technology to similar limitations as SQUID 

devices. Furthermore, the isolated MSR environment can be unsuitable for subjects to remain 

inside for long measurement times. Importantly, the large magnetic field generated by TMS 

could magnetize and negatively affect the shielding.  

 

To circumvent these practical issues associated with MSR, we instead use a small-sized shield 

that encompasses only the body part relevant to the measurement.  Since we are measuring 

nerve and muscle activity in the hand, the arm of the subject is placed inside a commercially 

available four-layer cylindrical shield (Twinleaf MS-2) with one set of end-caps removed.  The 

missing end-cap compromises the DC shielding by about a factor of 10 within the sensor region, 

however, DC magnetic field offsets (<50 nT at sensor positions) arising in the shield can be 

compensated with the sensors’ compensation coils. Nevertheless, the open-shield modification 

makes the low-field region susceptible to environmental magnetic noise, therefore the ability 

to average over multiple trials is crucial for retaining a high signal to noise ratio (SNR). 

 

Since magnetic-field gradients can be relatively large inside the open shield, the sensors must 

be protected from vibrations or any movement, particularly those that may accompany the 

invoked muscle activity.  Therefore, the subject rests their arm on a custom plastic mold (shown 

in Fig. 2a-b) which is suspended from an aluminum support that extends into the shielded region 

but is otherwise disconnected from the shield and sensors. The subject is thus able to make 

small movements of their hand within the shield without physical disturbance to the sensors 

and causing false signals. This was verified using control measurements in which the suspended 

mold and mount were moved at the expected trigger frequency without a subject arm inside. 

 

Environmental magnetic changes in a hospital setting were measured using a fluxgate 

magnetometer placed outside the shield (Fig. 1e), and while large features (>100 nT on 

fluxgate) were visible on the OPMs, these artifacts were generally sufficiently shielded as to 

not cause the sensor output to go out of range during the measurement.  The effects of these 

low-frequency transient offsets can be minimized by subtracting sensor signals (software 

gradiometry) and averaging. 

 

The complete system, consisting of magnetometers, magnetic shielding, hand mounting 

supports, and all associated data acquisition equipment was transported by vehicle to the 

hospital and deployed within two hours. 

 

Relevant photographs of the experimental equipment and setup are shown in Figure 2. 

 

E. Electroencephalography and electromyography 

To validate the utility of OPMs in TMS measurements, we maintain existing experimental 

protocols which combine TMS with EMG and EEG12,38. 

 

The EEG signals were recorded with a high-density (256 electrodes) EEG system (Net Station 

5.0, EGI, USA). The caps were placed manually with the Cz electrode positioned over a 

centralized location on the scalp, which was determined as the simultaneous midpoint of the 

arc length for both nasion-inion and preauricular arcs. The electrode impedances were kept 

under 50 kOhm throughout the experiment38-40, and a sampling frequency of 1000 Hz was used. 

The surface EMG was recorded from the FDI muscles. Both the EEG and EMG were digitized 

with a single amplifier. The amplifier applies a bandpass filter (low frequency cutoff 0.1 Hz, 

high frequency cutoff 70 Hz), and a notch filter (50 Hz) to the EEG. Similarly, a bandpass filter 



(low frequency cutoff 0.5 Hz, high frequency cutoff 500 Hz), and a notch filter (50 Hz) were 

applied to the EMG. 

 

F. Data analysis 

The EMG-electrode data were extracted and partially analyzed using open-source Python 

software (MNE)41,42. The TMS-evoked potentials (TEP) were computed from the analysis of 

EEG data using Matlab 2015b and the Fieldtrip toolbox (http://www.fieldtriptoolbox.org/). The 

exact details of the pre-processing steps and analysis have been described elsewhere41.  

 

All the magnetometer data from each participant were analyzed using a custom Python code 

for cutting and averaging based on the TMS trigger signal. After each trigger, one second of 

acquired data is defined as a single trial. Since the noise within a single trial is too large (due to 

the magnetically hostile hospital environment) to see clear biomagnetic signals, multiple trials 

must be averaged together in order to achieve good signal to noise. Notch filters were applied 

at 50 Hz (Q=20) and higher harmonics, and the data were smoothed with an evenly weighted 

four-point moving window. Smoothing is preferred over low-pass filtering to avoid filter 

artifacts that would arise from the sharp TMS pulse.  

 

The latency of the MEP (recorded from EMG channels) or the MEF from magnetic sensors 

provides important information about the nerve transmission speed. To extract latency values, 

a mathematical fitting function consisting of a double Gaussian with linear offset was chosen 

to fit the averaged data, since this would establish a repeatable and consistent way to compare 

the signal quality vs. the number of averages. The double Gaussian function that the data were 

fit to is defined as, 

 𝑦 = 𝐴1𝑒−(𝑥−𝑥1)22σ12 + 𝐴2e−(𝑥−𝑥2)22σ22 + 𝑦0 +𝑚 × 𝑥 , 
 

 

where A1 and A2 are the individual Gaussian amplitudes, x1 and x2 and respective offsets, σ1 and 

σ2 are the Gaussian widths, y0 is an offset and m is the linear slope. The fit parameters y0 and m 

capture the decaying artifact from the TMS pulse that overlaps the MEF signal. This fit was 

chosen as best able to capture the bi-phasic signal and extract a consistent value for the latency 

between the stimulus to the onset of the action potential but has no particular physical meaning. 

The fit was made around 25 ms after the trigger. This offset time window was chosen to 

coincide with the MEF latency and to avoid fitting the artifact. The latency is then defined as 

x1−2.5σ1, where x1 is the center offset value of the first fitted Gaussian, and σ1 is the half-width-

half-max of the fit. The value of 2.5σ1 represents a reliable point at which the data rises 

approximately to 5% of the Gaussian amplitude of the signal, defining a consistent value of the 

latency unbiased by manually chosen values. This fit was used for both the electric and 

magnetic data. 



 
FIG. 3: Combined EEG, EMG and MMG data for a single participant, showing relative detail 

in magnetic vs. electromyography signals, and how the data from three input methods in the 

experimental system complement each other. (a) 120 averages of MMG and EMG data before, 

during and after the TMS pulse (occurring at 0.0 s). Following the large artifact at the TMS 

pulse, magnetic activity in the hand is detected for approximately 300 ms in this subject, which, 

based on control measurements, was not attributable to vibration. (b) Zoom of the data in (a) 

for the time period immediately following the TMS pulse. EMG channel has been offset so as 

not to obstruct the MMG channels. The magnetic sensors detect both activity which coincides 

with the electric channel, and which occurs while the electric channel shows nothing. Eight of 

16 magnetic sensor channels were selected based on noise levels and signal amplitude. 

Referencing Fig. 1a: MMG1, magnetometer AC; MMG2, magnetometer 9P; MMG3, 

magnetometer AB; MMG4, magnetometer 9O. (c) EEG topograms of brain activity during 

selected points after the TMS pulse. The topograms were analyzed at times where magnetic 

features had largest amplitude. Brain activity begins in the motor cortex where the TMS pulse 

is applied. The activity then moves to other regions of the brain over the course of the 

measurement. 

 

III. RESULTS AND DISCUSSION 



Averaged data resulting from 120 repetitive TMS pulses at 0.5 Hz with a single participant are 

shown in Figure 3. While 16 magnetic sensor channels are available from the experiment, we 

select the eight shown for clarity and consistency across subjects because some sensors failed 

(out of range due to environment) during measurements. The sensors shown [y- and z- axes 

from magnetometers MMG1(AC), MMG2(9P), MMG3(AB) and MMG4(9O)] are positioned 

below and above the hand, respectively. In Figure 3(a), the signals from both the EMG and 

MMG are shown to occur within 300 ms of the TMS pulse, with little discernible activity 

thereafter. During the TMS magnetic artifact, which is a homogenous field modulation over the 

magnetometer array, the y and z sensors record large features with the same sign, indicating that 

fields at these sensors are oriented similarly. 

 

Figure 3(b) shows a narrower time window, where both magnetic and electric (shown in red) 

channels exhibit peaks at 26 ms. On the EMG channel, this feature is identified as the MEP12, 

and there is good agreement in the signal latency calculated from electric and magnetic 

channels. The magnetic field feature associated with the MEP, which we identify as the MEF, 

was observed in recordings from all four subjects. On the MMG channel, the relative sign and 

shapes of the magnetic features in the data could be used to inform source location of the muscle 

activity26. 

 

Starting at around 50 ms after the TMS pulse, the magnetometer channels record a bi-phasic 

feature that lasts up to 200 ms. This larger magnetic signal does not appear on the EMG but is 

observable across subjects’ MMG recordings. Based on control measurements, this signal is 

not attributable to vibrations in the system. These features may result from muscle activity 

arising in other parts of the hand that are not covered by the EMG electrodes, indicating that 

MMG can be used to map out which muscles are activated in repetitive TMS. Alternatively, the 

signal is consistent with an H-reflex and the loss of this H-reflex signal in EMG recording could 

be due to the choice of filter parameters implemented in this study43. Future studies will focus 

on identifying the source of these additional features in the magnetic signal. 

 

The MMG data are used to identify the time points after the TMS pulse at which to examine 

the EEG topology plots, shown in Figure 3c. Further study is needed to establish the relationship 

between the MMG and EEG, but the points here are chosen as times of interest, demonstrating 

that data from the different signal channels are comparable. At the topology plot data at 26 ms, 

corresponding to the time of the MEF, electrical activity in the brain was observed at the 

location of the TMS stimulus, in the M1 region. At later times, 86 ms and 180 ms, this activity 

moved to contralateral M1 and parietal regions, respectively.  Furthermore, the results showed 

similar patterns in other subjects (Figure 4). These results confirm that TMS induces focal 

effects, and these effects spread to other brain regions beyond the stimulated region44, at 

timescales similar to the periphery magnetic response.   

 



 
FIG. 4: Combined MMG, EMG, and EEG data for four participants. Variability across subjects 

is clearly discernible in the MMG data, but all show qualitatively similar results for all signal 

types. The shape of the TMS artifact is strongly dependent on the position of the TMS coil 

relative to the magnetic shield, which varies from participant to participant. Additionally, the 

actual duration of the TMS pulse is ~300 µs. The TMS artifact is distorted due to sensor 

bandwidth, low sampling, low-pass filtering, and timing jitter between the pulse and the 

sampling trigger. Note: The EMG electrode from Subject 1 was found afterwards to have been 

improperly grounded, leading to large noise artifacts that remained after filtering and 

smoothing. Nevertheless, the MEP is still visible. 

 

Figure 4 shows the TMS-invoked magnetic and electric response of the hand for four subjects. 

Each subject has a unique magnetic signal – for example, data from Subject 1 shows magnetic 

field values that are almost three times as large as those of the other subjects. Inter-subject 

variability during TMS could account for variability in the EMG and MMG recordings45. For 

both EMG and MMG, variability was calculated by removing any constant or linear offsets 

from the signal and taking the root-mean-square value of the signal between the TMS trigger 

and 500 ms post trigger. The variation from the mean for each subject was calculated and the 

average variability for all four subjects is 28% in EMG recordings, and 34% for MMG 

recordings. Variability in the magnetic recordings is greater than that of the EMG. This could 

result from the fact that the magnetic signal is strongly dependent on the distance between 

source and sensor, which varies based on the subject physiology. Inter-trial variation could not 

be calculated because of inadequate signal-to-noise-ratio. The poor SNR arises due to operating 



the OPMs in the open shield, which results in a residual noise amplitude of ~10 pT before 

averaging.  

 

Data from all the participants show that the MEP from the EMG is observed as a corresponding 

MEF in the magnetometer channels. Finally, the EEG result shows qualitatively similar 

behavior of the brain activity across subjects at the time points chosen based on features in the 

MMG. 

 

Latency analysis demonstrates the complementarity of MMG to EMG signals in TMS 

measurements. There is good agreement between the latencies extracted from MMG or EMG 

measurements (Table 1), and the magnetic field measurement offers important validations of 

the electrical potential measurement. For example, EMG data can be influenced by a variety of 

factors involving the electrode-skin contact, including transient changes such as changing 

electrode impedance due to increases or decreases in skin moisture during the measurement and 

changing noise floors46. While the specific geometry of the source determines the magnetic 

field at the sensor, the near unity permittivity of tissue or bone means that it conveys the 

absolute value of the field from the source, and that it could be used to decouple changing 

systematic experimental conditions between measurements. In our data set, the MMG data 

suffers from inadequate SNR to perform such analysis on a trial-by-trial basis. Repeatable 

latency values could be extracted for signals averaged from at least 45 trial windows, indicating 

that this is the minimum number of trials needed.  

 

Table 1: Comparison of MEP vs. MEF latency for each subject. Uncertainty, shown in 

parentheses, was calculated from covariance matrix of the fitted Gaussian function after full 

averaging of all trials. Uncertainty for the average is standard deviation of the four subjects. For 

Subject 4, there is a 1 standard-deviation discrepancy in the timing of the signal as measured 

from electric and magnetic channels. The good agreement in the averages indicates that there 

is not a statistically significant systematic over- or under- reporting of one method relative to 

the other. 

 MMG [ms] EMG [ms] 

Subject 1 26(1) 25(1) 

Subject 2 20(2) 20(1) 

Subject 3 18(2) 19(2) 

Subject 4 22(1) 20(1) 

Average 22(3) 21(2) 

 

 

IV. CONCLUSION 

A. Future Work 

Future work will mainly focus on increasing the SNR through implementing and optimizing 

active magnetic field compensation and software gradiometry. As discussed, MMG could also 

aid in identifying and locating TMS activated muscles that are not in regions probed by surface 

electrodes. In this work, the relative position between sensors and hand was not adequately 

controlled to perform reliable inversion of the field to acquire the source location. However, in 

future work, better sensor array positioning and hand position indicator methods similar to 

systems widely used in EEG, will be applied to achieve the high resolution widely demonstrated 

in the literature47-49. Another direction will be in combining the analysis of different system 

aspects, in order to probe possible connections between signals from different input channels.  

 

B. Significance 



These first results of OPM-recorded magnetic signals from TMS-evoked movement 

demonstrate the future viability of the TMS-OPM system for clinical research. We showed that 

magnetic field sensing of periphery limbs is possible in a regular hospital using small magnetic 

shields, circumventing the requirement for a large and expensive magnetically shielded room, 

which has been a pre-requisite for previous studies. The combined use of magnetic and electric 

field sensors allows for detailed validation of different signals, while providing complementary 

information about muscle activity in the hand. TMS is targeted, repeatable and safe, and thus 

can be used in future studies to identify the innervation pathways for specific muscles in various 

locations along the arm, by using the magnetic data for magnetic source imaging. 

 

Together with small-sized magnetic shielding, the portable and economical commercial OPM 

systems can enhance the utility of TMS. We demonstrated a complete MMG system that could 

be transported and deployed within several hours, with subject preparation times for the MMG 

within minutes. This approach represents a new modality in TMS research with opportunities 

for peripheral nerve study. 
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