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1. Introduction

A long tradition going back to Viner (1931) considers that fixed costs correspond to the

cost of fixed inputs.1 However, splitting the whole set of inputs into two disjoint sets

(with either fixed or variable inputs) does not provide a faithful description of many

economically interesting technologies. If some variable inputs are substitutable to fixed

inputs, then this sharp distinction vanishes. This paper extends the microeconomic

foundations of production analysis by allowing each input to have a fixed and a variable

part.

Empirical specifications of production and cost functions are also shaped by this

dichotomy between fixed and variable inputs. Some specifications consider fixed costs to

be the cost of the fixed inputs. Others, like the Cobb-Douglas, the CES, and even flexible

functional forms like the Translog, assume that fixed costs are nonexistent. We propose

a generalization of the Translog functional form which is compatible with inputs having

both a fixed and a variable part. Our empirical results support the extended Translog

specification and show that the fixed cost is significant and neglecting it yield estimation

biases, especially on the markup and the rate of returns to scale. Fixed costs, although

not functionally dependent on the output level, are correlated with output, and should

be explicitly considered to avoid these estimation biases. Our findings are compatible

with the predictions of models with heterogenous technologies (see e.g. Acemoglu and

Shimer (2000) and Cabral (2012)), in which there is a trade-off between production

functions having a large fixed cost and low variable cost and those with the converse

configuration.

Despite the challenging result of Baumol and Willig (1981, p.405) according to which

fixed costs “do not have the welfare consequences normally attributed to barriers to

entry”, there is a quite large literature on fixed inputs. Fixed costs are useful for

explaining coordination failure (Murphy et al., 1989) and international trade (Krugman,

1979, Melitz, 2003). Blackorby and Schworm (1984, 1988) and Gorman (1995) have

shown that fixed inputs hamper the aggregation of production (and cost) functions,

whereas a fixed cost does not represent an aggregation problem. Fixed costs are also
1 In the words of Viner (1931, p.26): “It will be arbitrarily assumed that all of the factors can for the short-run be

sharply classified into two groups, those which are necessarily fixed in amount, and those which are freely variable. [...]
The costs associated with the fixed factors will be referred to as the "fixed costs".”
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considered in general equilibrium theory with imperfect competition, see for instance

Dehez et al. (2003). Contributions in the field of industrial organisation on the reasons

and consequences of fixed (and sunk) cost, are so numerous that we cannot survey

them here. Berry and Reiss (2007) discuss some important issues on identification and

heterogeneity of fixed costs. Differences between fixed and sunk cost are commented by

Wang and Yang (2004) and Sutton (2007).

We mainly contribute to the literature in production analysis. One objective is to

characterize and estimate both fixed and variable components of the cost function, to

investigate their heterogeneity over firms and study how fixed costs affect their behavior

in terms of price setting and returns to scale. Microeconomic textbooks present alter-

native characterizations of fixed costs. We follow Baumol and Willig (1981, p.406) and

consider the long run fixed cost as the magnitude of the total long run cost function

when the production level tends to zero. This paper derives the production technology

which generates the fixed cost, an issue which is usually neglected when dealing with

fixed cost. It is well known (see Mas Colell et al., 1995, p.135) that fictitious inputs can

be used for imposing constant returns to scale on arbitrary technologies. This paper

shows that the fixed cost of production can be represented as the cost of fictitious (un-

observed) inputs. We first characterize the production technology which generates the

traditional fixed cost and show that it is quite restrictive and given by y = F
(
xv + xf

)
where xv denotes the vector of variable inputs and xf the fixed inputs. As total input x

can always be additively split into two categories, the structure F may be considered as

perfectly general. However, two physically similar inputs may be technologically differ-

ent and we propose to extend the production function to y = G
(
xv, xf

)
. This extended

production technology generates a fixed cost which is not equal to the cost of inputs xf ,

and identification of fixed inputs is no longer possible. However, the amount of inputs

which allows to initiate production is well identified.

Our theoretical contribution also requires extending the econometric toolbox for esti-

mating cost functions. First, usual cost function specifications are not compatible with

a flexible specification of the fixed cost. For approximating a cost function with a fixed

cost component, we have to go beyond (locally) flexible cost functions, and develop a

cost specification which is a valid approximation at two points: around the actual point
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of production and around the breakup point which allows a firm to start production.

Second, as the inputs xv and xf cannot be observed, we have to amend the traditional

estimation method by introducing unobserved and correlated heterogeneity in the fixed

and variable cost specification. We extend Swamy’s (1970) random coeffi cient estimator

to our nonlinear setup. The empirical part of this paper uses panel data for US man-

ufacturing sectors in order to estimate the height and the type of fixed cost as well as

their implications in terms of markup pricing, returns to scale and technical change.

In Sections 2 and 3 we explore two definitions of fixed costs and their microeconomic

foundations. Sections 4, 5, and 6 discuss econometric issues related to fixed costs: biases

when they are neglected, specification issues, and unobserved heterogeneity. Section 7

reports the empirical results, obtained for 462 US manufacturing industries observed

over the years 1958 to 2005.

2. Defining fixed costs and fixed inputs

The definition of fixed costs is central in economics and is briefly discussed in most

introductory microeconomic textbooks.2 One diffi culty with most definitions is that

they do not highlight the relationship between the fixed cost and the fixed inputs. Are

fixed inputs physically fixed? Do fixed inputs correspond to nonoptimal choices? This

section shows that it is not necessarily the case: a fixed cost can arise in a context where

all inputs are optimally adjusted.

Most economists agree that the fixed cost u corresponds to the part of the cost which

does not vary with the level of production:

c (w, y) = u (w) + v (w, y) , (1)

where w denotes the input prices and y the output level. Function v corresponds to the

variable cost of production and satisfies v (w, 0) = 0. Any cost function can uniquely be

written in this way by defining

u (w) ≡ c (w, 0) (2)

v (w, y) ≡ c (w, y)− c (w, 0) .

2 It seems somewhat surprising, however, that the New Palgrave dictionary of economics has no entry for the term
"fixed cost". The term is also not commented in Diewert’s (2008) contribution on cost functions.
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We will comment the following alternative definitions for the fixed cost and fixed inputs.

Definitions 1. For an active firm, the fixed cost is

a) the accounting cost of the inputs which are physically fixed.

b) the cost of the inputs required for producing an arbitrarily small amount of output.

Definition 1 does not require (at this stage) that the level of the fixed cost is optimal

(so it does not necessarily correspond to the minimal value of the accounting cost).

In D1b the inputs required for initiating production could be physically fixed but it is

not necessary the case. Since the cost function is related to input demands x◦ by the

accounting relationship c (w, y) = w>x◦ (w, y) for any y ≥ 0, we obtain the level of fixed

cost compatible with D1b as

u (w) = lim
y→0+

c (w, y) = lim
y→0+

w>x◦ (w, y) .

This shows that D1b implies that the fixed cost does not change with the production

level, but can change with w. Whereas it is straightforward to define variable inputs as

inputs whose level can be adjusted to minimize their accounting cost and can possibly

be set to zero, the definition of fixed inputs is more involved, as they are not necessarily

optimal, nor can they necessarily be set to zero.

We show that the fixed cost u (w) does not necessarily correspond to the cost of the

fixed inputs, but that it also includes a part of the cost of variable inputs when they

are suffi ciently complementary to the fixed inputs. For instance, if capital is physically

fixed and energy is fully variable, but capital cannot be run without say 1000 KWh of

energy, then the part of the energy input which is necessary to run the fixed capital

input becomes fixed. It is the production technology which determines whether inputs

are variable or fixed and which part of each input is fixed or variable. This remark

has important implications for the specification of fixed and variable cost functions and

these have been largely ignored in the literature.

3. A microeconomic framework for fixed costs

The main result of this section characterizes an extended production function able to

describe fixed inputs in a more general way than the existing literature. A shortcoming
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of the traditional restricted cost function (see Subsection 3.1), is that it relies on a

partition of all inputs into two disjoint categories: variable and fixed inputs. Actually,

similar inputs can be used for different types of production activities. Engineers, for

instance, can be allocated to production or to research and development activities. While

engineers’production increases the current output level, it is not the case when they

are allocated to research and development, which withdraws them from production (like

in Aghion and Howitt, 1992, for instance). Similarly, computers can be used either for

logistics, production management or accounting, activities which do not have the same

impact in terms of production and cost. Before presenting the extended production and

cost function, we shortly overview traditional production analysis.

3.1 On the limitations of traditional production analysis

For modelling fixed inputs, production analysis relies on a partition of the input vector

x into two disjoint categories: those which can be adjusted (variable inputs, denoted x̃)

and those which are fixed or quasi-fixed (x):3

x =

(
x̃
x

)
≥ 0. (3)

The corresponding input prices are denoted by
(
w̃>, w>

)>
. The output level is given by

y = F (x) where F : RJ → R denotes the production function which is increasing in x.

The restricted variable cost function is defined as:

Vr (w̃, x, y) = min
x̃≥0

{
w̃>x̃ : F (x̃, x) ≥ y

}
.

The properties of the restricted cost functions have been investigated by Lau (1976) and

Browning (1983). For empirical implementations see e.g. Caves et al. (1981), Pindyck

and Rotemberg (1983) and Morrison (1988). The total restricted cost function is given

by

Vr (w̃, x, y) + w>x, (4)

where the last term denotes the fixed cost. In the long-run, all the fixed inputs can

be adjusted at their optimal level and this defines the long-run or unrestricted cost

function:

c (w, y) = min
x≥0

{
Vr (w̃, x, y) + w>x

}
= c̃ (w, y) + c (w, y) , (5)

3 Here, the notation x > 0 means that all J components xj > 0. In contrast x ≥ 0 means that xj ≥ 0 for all j.
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where c̃ (w, y) = Vr (w̃, x∗ (w, y) , y) represents the long run variable cost, and c (w, y) =

w>x∗ (w, y) is the long run fixed cost. Function x∗ denotes the optimal level of fixed

inputs, which, without further restrictions on Vr, depends on the production level. As a

consequence, this approach violates (in the long run) both definitions given in D1. More

than that, in the long run it is not possible to identify c̃ separately from c, unless we

make strong a priori assumptions on which inputs are fixed in the short run. A further

drawback of technology F appears when we impose that Vr be a variable cost function,

namely Vr (w̃, x, 0) = 0. This restriction implies that there are no fixed cost in the long

run: x∗ (w, 0) = 0 (unless we impose a positive lower bound to x).

So, according to traditional production analysis, the only justification for fixed cost

is that physically fixed inputs cannot be optimally adjusted (either for technical reasons

or for lack of rationality). This view excludes a variety of interesting situations in which

fixed and variable inputs are imperfect substitutes and play different roles in production.

3.2 Another view of the traditional production function

Instead of partitioning x into two disjoint types of inputs, let us assume that each input

comprises a part which can be adjusted and a part which is fixed (in a sense that is

clarified in Definition 2 below):

x = xv + xf , (6)

with x, xv, xf ∈ RJ+. This generalizes (3) which is obtained as a special case when xv =(
x̃>, 0>

)> and xf =
(
0>, x>

)>
. This subsection shows that the variable and fixed cost

functions used in production analysis is generated from an additive production function

y = F
(
xv + xf

)
, (7)

which requires perfect substitutability between xv and xf .

As our purpose is to describe the production possibilities for a production level close

to zero (in order to be consistent with D1b), we define the input requirement set as

follow.

Definition 2. In terms of the traditional production function, the fixed cost is the

cost associated to inputs belonging to the input requirement set XF defined as

XF ≡ lim
ε→0+

{z ≥ 0 : F (z) = ε} .
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Definition 2 requires that the limiting isoquant XF exists. Definition 2 is useful to

characterize the fixed cost in terms of the production function F : it is easy to show

that a fixed cost occurs if the set XF does not include the point x = 0.4 In order to be

compatible with Definition 1b, we consider in Definition 2 the isoquant corresponding

to the production level ε > 0, instead of ε = 0, because with most production functions

compatible with a fixed cost, the condition F (x) = 0 characterizes a thick isoquant, in

the sense that, if it is possible to produce nothing with something (∃x > 0 : F (x) = 0),

then it is also possible to produce nothing with even less (there exist x′ < x such that

F (x′) = 0). So, only the upper frontier of the set {z ≥ 0 : F (z) = 0} is interesting for

identifying a fixed cost. Let us investigate the implications of this additive structure in

terms of the restricted variable and total cost functions:

vr
(
w, xf , y

)
= min

xv≥0

{
w>xv : F

(
xv + xf

)
≥ y
}

cr
(
w, xf , y

)
= vr

(
w, xf , y

)
+ w>xf .

The restriction xv ≥ 0 is important here, because it can be optimal to use no variable

inputs at all for some levels of xf .

Proposition 1. Let xf ∈ XF 6= ∅ and xv ≥ 0. Then cr
(
w, xf , 0

)
= w>xf ≥ 0,

vr
(
w, xf , 0

)
= 0. The restricted cost function cr and the cost minimizing variable inputs

x∗v satisfy either

(i) x∗v > 0 and for y > 0,
cr
(
w, xf , y

)
= C (w, y) > w>xf (8)

and x∗v
(
w, xf , y

)
= X∗v (w, y) > 0 or

(ii) x∗v,j = 0 for some j, and

cr
(
w, xf , y

)
= Vr (w̃, x, y) + w>x, (9)

where x is a subvector of xf and w̃ corresponds to the price subvector of w =
(
w̃>, w>

)>
corresponding to x∗v,j > 0.

The proof of this result is given in the Appendix. Proposition 1 states that the

variable cost is zero when production vanishes. This result is driven by the additive

structure of F which ensures that if there exists a point x such that F (x) = 0, then xv

4 For the purpose of exposition we assume that the minimum value of y included in the range of F is zero, but we
could easily generalize to any other value.
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can be set to zero in the additive decomposition x = xv + xf . In the case of Proposition

1(i), the production function F yields a cost function which is independent of the level

of fixed input, and which is compatible with both Definitions 1a and 1b. A frustrating

consequence of Proposition 1(i) is that fixed inputs can be seen as if they were set at

their optimal level, as:
∂cr
∂xf

(
w, xf , y

)
= 0⇔ − ∂vr

∂xf

(
w, xf , y

)
= w.

It is the perfect substitutability between the variable and the fixed inputs which is

driving this result. Any mistake in adjusting xf can be perfectly compensated by setting

xv optimally. In summary, technology F is not really suitable for modelling fixed inputs,

as it lacks generality. Proposition 1(ii) gives the general formulation of the cost function

corresponding to F when corner solutions for the variable inputs are allowed. The

structure of the cost function (9) is the same as in (4) and is common in traditional

production analysis (see Chambers, 1988, for instance). So we conclude this section

by noting that production function F with an additive structure between xv and xf

is behind the traditional theory of fixed and variable costs. This additive structure is

restrictive and hides important features of production theory.5

x1
0

x2

x1
f

x0
f

F(xv + x0
f) = F(xv + x1

f) = y1

A

B

F(0+ x0
f) = F(0 + x1

f) = 0

Figure 1: Isoquants for F
(
xv + xf

)
Figure 1 illustrates Proposition 1. Endowed with a fixed input vector x0

f , the variable

inputs available to the firm and satisfying xv ≥ 0 are located in the north-east quad of

5 One restriction is that
∂2cr

∂w̃j∂wk
(w, xf , y) = 0.

For given xf , y, there is no substitutability between inputs j and k. This is too restrictive because, even for given xf ,
inputs j and k can be substituted for each other because they have a fixed and a variable component.
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x0
f . At given input prices w, the firm minimizes its variable cost of producing y1 at the

interior point A. At this point, according to Proposition 1i, the cost function is given by

C (w, y) .With another level of fixed inputs, however, the available set of variable inputs

will be different. With x1
f , the minimal variable cost for producing y

1 is achieved at B,

on the boundary of the set
{
xv ≥ 0 : F

(
xv + x1

f

)
≥ y1

}
. At point B we have x∗v1 = 0 and

the optimal level of x∗2v is restricted by the level of x
1
f .

3.3 An extended production function

Whereas from the accounting viewpoint both types of inputs xv and xf are similar (the

cost of a unit of the jth fixed and flexible input is wj), technologically they should not

be restricted to play similar roles as it is the case with F
(
xv + xf

)
. We now define

an extended production function G as y = G
(
xv, xf

)
where G : RJ+ × RJ+ → R+. For

simplicity, we assume that G is single valued, continuously differentiable, increasing in

its arguments and that G
(
0, xf

)
= 0. In this context, the restricted variable cost function

now becomes:

vr
(
w, xf , y

)
= min

xv

{
w>xv : G

(
xv, xf

)
≥ y
}
. (10)

Now, a given input, say capital, can appears twice in (10): once in vector xv and once in

xf ; their marginal productivities can be different. This overlapping structure is similar

to the one considered by Blundell and Robin (2000) in consumer analysis. In contrast

to their approach, we do not impose that xv is separable from xf (a structure which

they call latent separability).

Leontief’s (1947) aggregation theorem highlights the restrictions which are implicit

in production function F . The number 2J of inputs xv and xf which appear in G can

be reduced to the J aggregate inputs xv + xf iff we have
∂G

∂xvi
=

∂G

∂xfi
, ∀i = 1, . . . , J.

We do not assume in the sequel that these restrictions necessarily apply to G.

One diffi culty with (10), is that if vr is defined for any arbitrary levels of xf , we can

switch the notation from xf to xv and rewrite vr (w, xv, y) . So, in order to be able to

identify xf as the fixed inputs, we need to put more structure on vr, and we do this by

introducing restrictions derived from the definition of the fixed cost and inputs.

Definition 3. In terms of the extended production function G, the fixed cost is the
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cost associated to inputs belonging to the fixed input requirement set XG defined as

XG ≡ lim
ε→0+

{z ≥ 0 : G (0, z) = ε} . (11)

D3 defines the set of all fixed input combinations required for starting production.

This definition is more general than D2, because it does not assume that fixed and

variable inputs are perfectly substitutable. As for XF , we impose that xv = 0 belongs

to the fixed input requirement set XG, but get rid of additivity. The next result is a

straightforward extension to technology G of those available for technology F.6

Proposition 2. If xf ∈ XG then,

(i) vr
(
w, xf , 0

)
= 0, vr

(
w, xf , y

)
> 0 for any y > 0

(ii) vr is increasing in y

(iii) vr is decreasing in xf .

Proposition 2 means that the restricted variable cost function vr satisfies the proper-

ties of a variable cost function: it vanishes for arbitrarily small production levels. As a

consequence, the restricted fixed cost is given by

ur
(
w, xf

)
≡ lim

y→0+
cr
(
w, xf , y

)
= w>xf ,

and total restricted cost satisfies

cr
(
w, xf , y

)
= ur

(
w, xf

)
+ vr

(
w, xf , y

)
. (12)

Both production technologies F and G are represented on Figure 2 in the case where

a single input is decomposed into a fixed and a variable component. Figure 2a illustrates

how the introduction of a fixed input xf satisfying F
(
x0
f

)
= 0 and the reparameterization

x ≡ xv +xf yield the technology F
(
xv + x0

f

)
. On Figure 2b, the isoquant corresponding

to the startup production level G
(
xv, xf

)
= ε is not a straight line, which opens the

possibility to choose a fixed input different from x0
f as an admissible value for starting

production. Input x1
f for instance, allows to start production with production function

G
(
xv, x

1
f

)
6= G

(
xv, x

0
f

)
, provided that xv is suffi ciently high for compensating the decline

from x0
f to x

1
f .

6 We only give the properties which are the more interesting for our purpose, see Lau (1976) and Browning (1983) for
other properties.
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xv, x

xf
0

y

xf

0

F(xv+xf
0)

xf
0

F(x)

xv

xf
1

y

xf

0

xf
0

G(xv ,xf
0)

G(xv ,xf
1)

G(xv,xf) = 0

(a) Technology F (b) Technology G

Figure 2: Fixed and variable inputs and production possibilities

We illustrate the usefulness of technology G with an example which also illustrates

the claims of Proposition 2.

Example 1. The technology G : R2
+ → R+ is given by

y = G
(
xv, xf

)
=
(
xv + βxf

)
xαf − γ

for y ≥ 0. Here xf ∈ XG ⇔ xf = (γ/β)1/(α+1) . This yields the restricted variable cost

function

vr
(
w, xf , y

)
= wx∗v

(
w, xf , y

)
= w (y + γ)x−αf − wβxf = w

y

xαf
,

which satisfies vr
(
w, xf , 0

)
= 0 for xf = (γ/β)1/(α+1) . The restricted fixed cost function

is ur
(
w, xf

)
= wxf = w (γ/β)1/(α+1) . For α = 0 and β = 1 we obtain the traditional

production function as a special case. Example 1 also illustrates that in both cases of

exogenous (physically fixed) and endogenous input xf , there is no conflict between D1a

and D1b.

The structure of the isoquants of F and G is represented in Figure 3 for J = 2,

in the (x1, x2)-plane (with x1 = xv1 + xf1). In Figure 3a the slopes of the isoquants

corresponding to F only depend upon total input use x = xv + xf and not upon the

share of the fixed inputs xf in the composite input x. At point A for instance, it is

possible to produce y0 using fixed input x0
f or x

1
f . Only the total input quantity matters

and since x0
f + x0

v = x1
f + x1

v at point A, the choice of the fixed input is irrelevant. Note

that, contrary to Fig. 2, the isoquants do not necessarily cross the axes on Fig. 3,

because axes now report total input levels for two different inputs, and not just how a
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given input is split into variable and fixed amounts.

x1
0

x2

F(0 + xf) = 0x1
f

x0
f

F(xv + x0
f) = y0

F(xv + x1
f) = y1

A

x1
0

x2

x1
f

x0
f G(xv , x1

f) = y0

G(xv , x0
f) = y0

C

B

A

G(0 , xf) = 0

(a) Isoquants for F (b) Isoquants for G

Figure 3: Fixed and variable inputs and substitution possibilities

Figure 3b represents in the (x1, x2)-plane the isoquants for technology G and two dif-

ferent fixed input vectors x0
f and x

1
f . With technology G, the choice of the level of fixed

inputs determines the substitution possibilities between the variable inputs. Although

we have not introduced any distinction between ex-ante and ex-post technologies in our

model, Figure 3 resembles those typically obtained with putty-putty (or putty-clay or

clay-clay) technologies (see e.g. Fuss, 1977). The similarity is due to the fact that we

split x into two (fixed and variable) non-additive components. With technology G the

choice of a particular fixed input level xf coincides with a choice of a particular produc-

tion technology and a specific substitution pattern between variable inputs. On Figure

3b, the isoquant corresponding to x0
f characterizes inputs which can easily be substi-

tuted the one for the other, whereas for x1
f substitution becomes more diffi cult. Note

that for a given output level, the isoquants for G corresponding to the fixed input level

x0
f can cross those obtained for x

1
f . For instance, at point A the production level y

0 can

be produced using two types of technologies, each one exhibiting a specific substitution

pattern.

Figure 3b also illustrates that if fixed inputs are neglected, production function G

is not necessarily quasi-concave in x (at point A). Moreover, optimal choices for input

bundles can be located in the zone violating quasi-concavity in x and so the cost function
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will not necessarily be concave in w. In the context of fixed cost, imposing simultaneously

concavity in w and xf = 0 on the cost function may end up with worse estimates than

extending the cost function to be compatible with the occurrence of fixed cost (see Lau,

1978, and Diewert andWales, 1987, for seminal contributions on concavity enforcement).

The next diffi culty we have to deal with is related to the fact that the level of fixed

inputs can be either exogenous or endogenous. Figure 3b depicts at point C a situation at

which the variable inputs are optimal given the levels of fixed inputs x0
f and production

level y0, however, if xf could be chosen, the firm would set them to x1
f and produce y

0

at point B. It is important to note that isoquant and isocost line are not necessarily

tangent at the optimum level x1
f for xv = 0.

Whereas variable inputs can by definition be adjusted for minimizing costs, the fixed

inputs are not necessarily set at their optimal level. We say that a fixed input xfj is

exogenous when its actual level is not optimal in the sense that the equality between its

shadow value and market price is violated:

− ∂vr
∂xfj

(
w, xf , y

)
6= wj , (13)

for the observed values of
(
w, xf , y

)
and xfj > 0. The extended framework based on

G
(
xv, xf

)
is useful as it allows to split the input x into a part xv that is effi ciently

allocated, and a part xf which is not necessarily so.7

In the long run, fixed inputs can be determined endogenously by the firm, and they

may in some case be set to zero. Such a corner solution occurs at xf = 0 if 0 ∈ XG and:

0 ≤ vr (w, 0, y) ≡ min
xv≥0

{
w>xv : y ≤ G (xv, 0)

}
< vr

(
w, xf , y

)
+ w>xf ,

for any xf > 0. Equivalently, the choice x∗f = 0 is (locally) optimal if at point (w, 0, y)

the increase in fixed cost is not compensated by a greater reduction of the variable cost:

wj +
∂vr
∂xfj

(w, 0, y) > 0.

Then it is optimal to adopt a production structure without any fixed input. In many

cases however, an inner solution for x∗f exists. It is characterized by the equality between

the shadow value of the fixed input and its market price:

− ∂vr
∂xfj

(
w, x∗f , y

)
= wj . (14)

7 Common explanations for why the level of the fixed inputs is not optimal are related to (i) technological constraints,
(ii) indivisibilities of the fixed inputs, (iii) allocative ineffi ciencies and (iv) intertemporal dependences.
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Example 1 (continuation). For vr
(
w, xf , y

)
= w (y + γ)x−αf − wβxf , we find that

(assuming α > 0 and β < 1)

x∗f (w, y) =

(
α

1− β (y + γ)

) 1
1+α

which varies with the level of output. In the traditional case: α = 0 and β = 1, the re-

stricted variable cost function becomes vr
(
w, xf , y

)
= wy and we obtain a corner solution

x∗f = 0, conformably to Section 3.1. The long-run variable cost function becomes:

vr
(
w, x∗f , y

)
= w (y + γ)

(
α

1− β (y + γ)

) −α
1+α

− wβ
(

α

1− β (y + γ)

) 1
1+α

and this does not necessarily vanish anymore for a production level going to zero:

vr
(
w, x∗f (w, 0) , 0

)
= wγ

(
α

1− βγ
) −α

1+α

− wβ
(

α

1− βγ
) 1

1+α

.

Example 1 illustrates the fundamental identification problem occurring when inputs

are optimally adjusted: the fixed cost generally differs from the cost of the fixed inputs.

Indeed, after normalizing the variable and fixed cost function according to (2), we obtain

the fixed cost

u (w) = w>x∗v
(
w, x∗f (w, 0) , 0

)
+ w>x∗f (w, 0) .

When fixed and variable inputs can be imperfectly substituted for each other, the op-

timal amount of fixed input depends upon w and x∗f (w, 0) is not necessarily included

in the input requirement set XG. This means that the level of fixed input cannot be

determined ex-ante using only the definition of XG. When xf can be adjusted, it is no

longer possible to separately identify xf and xv. Fortunately, definition D1b of the fixed

cost is fully compatible with this situation, but D1a is violated: u (w) 6= w>x∗f (w, 0).

Briefly, an input cannot be said to be fixed or variable prima facie, using only physical

properties of the inputs. It is the technology which in last instance determines whether

a given input is fixed or variable. This explains why D1b which relies on the technology

provide the more general definition of the fixed cost. Few technologies allow to obtain

an optimal level of x∗f independent of y. We characterize them below.

Proposition 3. Assume that the technology G is increasing and quasi-concave in xv,

and that x∗v > 0 at the optimum. Let K : RJ+ → RJ+ and F : RJ+ → R+ both be increasing
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functions.

(i) The restricted cost function is given by

cr
(
w, xf , y

)
= ur

(
w, xf

)
+ v (w, y) , (15)

with v (w, 0) = 0 if and only if the production function is given by

G
(
xv, xf

)
= F

(
xv +K

(
xf
))
. (16)

(ii) The optimal level of xf is independent of y if and only if the restricted cost

function is (15) or the production function is (16).

Proposition 3 characterizes the cost and production functions which generate a fixed

cost. Requirement (16) is less stringent than separability of G in xf because it does not

impose that K
(
xf
)
be a unique aggregate fixed input. Here, the vector valued function

K comprises J aggregates for the fixed inputs. Proposition 3 also aggregates additively

some fixed and variable inputs together since F depends upon xv+K
(
xf
)
. As can be seen

by comparing (16) and F
(
xv + xf

)
, the former is also more general than the traditional

production function F for which fixed and variable inputs are perfect substitutes. Figure

4 provides an illustration in the two inputs case (J = 1). It shows that xf does not vary

with y, contrary to x∗v.8 Figure 4 gives the decomposition of variable input xv into a

fully variable component x∗v (w, y) − x∗v (w, 0) which can be set to zero when there is no

production, and x∗v (w, 0) which has to be used for starting production. It also shows

how technology F
(
xv +K

(
xf
))
differs from F

(
xv + xf

)
. With F

(
xv +K

(
xf
))
there is

perfect substitutability between the components of xv and K
(
xf
)
, but not between xv

and xf . For a given input xi, the slope (∂F/∂xvi) /
(
∂F/∂xfi

)
of the isoquant (Figure

4) is not restricted to be equal to −1 out of the optimum. Moreover, for two different

inputs, xh and xi, the slope
(
∂F/∂xfh

)
/
(
∂F/∂xfi

)
of the isoquant is not restricted to

be equal to (∂F/∂xvh) / (∂F/∂xvi) out of the optimum. Fixed inputs can be substituted

according to a different pattern than variable inputs.

8 We also see why the corner solution x∗v = 0 has to be excluded, because at this point the level of x∗f can vary with y.
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xv
0

xf

F(xv +K(xf)) = 0

F(xv +K(xf)) = y

Figure 4: The fixed and variable inputs
decomposition

We conclude this section by emphasizing that, even though a separate identification

of xf and xv is not possible without additional restrictions, it is possible to identify

uniquely x∗f (w, 0) + x∗v (w, 0) as well as the level of the fixed cost. If we assume that

decomposition (1) is not unique, then there exist ũ 6= u and ṽ 6= v such that:

c (w, y) = ũ (w) + ṽ (w, y) ,

with ṽ (w, 0) = v (w, 0) = 0. However, the equality

u (w) + v (w, y) = ũ (w) + ṽ (w, y)

is satisfied for any (w, y) iff u (w) = ũ (w) (obtained for y = 0) and v (w, y) = ṽ (w, y), and

this proves unicity. It is also interesting to note, that although fixed cost cannot be

observed, because the situation in which firms produce an output level close to zero is

hypothetical, the level of fixed cost is well identified empirically and can be estimated.

4. Some consequences of neglecting fixed costs

This section discusses three drawbacks arising when fixed inputs are neglected. A first

problem of disregarding xf is the oversimplification of various economic relationships,

in particular the relationship between fixed inputs and pricing behavior. Let p = P (y, z)

denote the inverse output demand which depends on exogenous macroeconomic parame-

ters z and the firm’s own production level. With market power, the firms’the optimum

16



is characterized by:
∂vr
∂y

(
w, xf , y

)
= p

(
1 +

∂P

∂y

y

P

)
. (17)

This equation and the discussion above shows that a fixed input xf has an impact on the

marginal cost function unless cr has the specific structure given in (15). It also implies

that there is a relationship between the fixed input and the markup η ≡ ∂ lnP/∂ ln y, via

the marginal cost.

Neglecting the fixed cost is a source of bias. By Shephard’s lemma, we have

x∗ (w, y) =
∂u

∂w
(w) +

∂v

∂w
(w, y) .

If the fixed cost is neglected, then it enters the residual term which will be correlated

with w, which may bias the estimates.

From a theoretical viewpoint, neglecting the fixed cost by setting u (or ur) equal

to zero may lead to underestimation of returns to scale. In order to show this point,

we consider the long-run case and assume that the cost function is convex in y. By

convexity we have,

c (w, 0) ≥ c (w, y) +
∂c

∂y
(w, y) (0− y)

⇒ ∂c

∂y
(w, y)

y

c (w, y)
≥ 1− c (w, 0)

c (w, y)
.

As the return to scale is the inverse of the cost elasticity with respect to the output,

imposing zero fixed cost implies imposing decreasing returns to scale. The equation

above also shows that for given level of costs and outputs, neglecting the fixed cost

leads to an overestimation of the marginal cost, which will also cause an underestima-

tion of the markup. As ∂c/∂y (w, y) = w>∂x∗/∂y (w, y) , overestimating the marginal cost

often coincides with the overestimation of the input demand sensitivity to output vari-

ations. In addition, from an empirical viewpoint, setting the fixed cost equal to zero

introduces an omitted-variable bias in the estimation of technology parameters. In the

following sections, we discuss the empirical issues raised by the estimation of the fixed

cost, including suitable functional forms for cost functions, and the treatment of cost

heterogeneity with unobserved levels of xf .

17



5. On flexible functional forms

In the 1970’s and 1980’s, several researchers proposed new parametric specifications for

the production technology, and introduced so-called flexible functional forms, which are

able to approximate locally an arbitrary cost function. These functional forms, still

widely used in production analysis, are not adequate for modelling fixed costs: either

they completely exclude fixed costs, or specify them in an inflexible way. The variable

t is now introduced for denoting technical change.

In their seminal paper, Diewert and Wales (1987) have introduced several cost func-

tions, many of which can be written as

CDW (w, y, t) = a>ww +
(
α>ww

)
att+ V DW (w, y, t) , (18)

with V DW (w, 0, t) = 0. This identifies the fixed cost as UDW (w, t) = a>ww +
(
α>ww

)
att,

where aw, αw, at denote technological parameters. So, the fixed cost function is linear

in w and t and is not a flexible specification (in the sense of Diewert and Wales, 1987).

The same can be shown for the variable cost specification V DW .

Let us now consider the Translog functional form (Christensen et al., 1971) with

technology parameters given by β:

CTL (w, y, t) = exp(β0 + β>w lnw + βy ln y + βtt (19)

+
1

2
lnw>Bww lnw + lnw>Bwy ln y + lnw>Bwtt

+
1

2
βyy (ln y)2 + βytt ln y +

1

2
βttt

2),

where the notation is as in Koebel et al. (2003). One of the main drawbacks of the

Translog functional form is that it is not suitable for modelling fixed cost.

Proposition 4. The Translog functional form implies a fixed cost that is either zero

or infinite (in which case CTL is decreasing in y for some values of y).

This result shows that the Translog cost function is badly behaved in some regions,

and especially when production is close to zero, which defines the fixed cost of produc-

tion. This proposition illustrates that the Translog is only able to approximate locally

an unknown cost function, but not globally, and justifies the specification of alternative

functional forms for the purpose of estimating a fixed cost. Proposition 4 points out

a paradox: although the Translog specification is flexible (Diewert and Wales, 1987,
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Theorem 1), it excludes fixed costs. The reason for this apparent contradiction is to

be found in the limitations of the flexibility requirement, which just requires that the

cost function be a local approximation, in some neighborhood of y, but not necessarily

at the neighborhood of y = 0 which defines the fixed cost. In the sequel we rely on a

functional form which is flexible at two points.

Definition 4. A two-points Flexible Functional Form (2FFF) for a cost function

provides a second order approximation to an arbitrary twice continuously differentiable

cost function C at point where y > 0 and at y = 0+.

We have seen that a production technology with fixed cost, can be represented by two

different production technologies: one for initiating production H
(
xf
)
≡ G

(
0, xf

)
(using

only fixed inputs), and one for reaching the output level y, and given by G
(
xv, xf

)
. So

it becomes quite natural to specify both technologies in a flexible way. Similarly, the

cost function is additively separable in two parts: one part u corresponding to the cost

at zero output level and one part, v, reflecting the production cost of the output. So if

our objective is to provide an approximation of the production technology, both parts

should be treated with equal importance, and we suggest here to use a flexible functional

form for both the fixed and variable cost functions. Definition 4 implies that a 2FFF

cost function is the sum of two 1FFF fixed and variable cost functions U and V.

Diewert and Wales (1987, p.45-46) define a one point (1FFF) flexible cost function

at the point
(
w0, y0, t0

)
as one being able to approximate an arbitrary cost function C0

locally, where C0 is continuous and homogeneous of degree one in w. This definition is

satisfied if and only if C has “enough free parameters so that the following 1 + (J + 2) +

(J + 2)2 equations can be satisfied”:

C
(
w0, y0, t0

)
= C0

(
w0, y0, t0

)
(20)

∇C
(
w0, y0, t0

)
= ∇C0

(
w0, y0, t0

)
∇2C

(
w0, y0, t0

)
= ∇2C0

(
w0, y0, t0

)
,

where the ∇C (respectively ∇2C) denotes the first (second) order partial derivatives

with respect to all arguments of C. Since the Hessian is symmetric and C is linearly

homogeneous in w, this system includes only J (J + 1) /2 + 2J + 3 free equations. The

requirements (20) have to be fulfilled at a single point y0 which can be chosen to be
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positive, so the 1FFF definition is compatible with the absence of fixed cost. This

explains why the Translog is flexible although U ≡ 0. This drawback of 1FFF explains

why we consider 2FFF.

A 2FFF for a cost function has enough free parameters for satisfying the following

1 + (J + 1) + (J + 1)2 + 1 + (J + 2) + (J + 2)2 equations:

U
(
w0, t0

)
= U0

(
w0, t0

)
, (21)

∇U
(
w0, t0

)
= ∇U0

(
w0, t0

)
,

∇2U
(
w0, t0

)
= ∇2U0

(
w0, t0

)
,

and for y0 > 0,

V
(
w0, y0, t0

)
= V 0

(
w0, y0, t0

)
, (22)

∇V
(
w0, y0, t0

)
= ∇V 0

(
w0, y0, t0

)
,

∇2V
(
w0, y0, t0

)
= ∇2V 0

(
w0, y0, t0

)
.

Since U is linearly homogeneous in w, and its Hessian is symmetric, this imposes the

following additional restrictions 2 + J + (J + 1) J/2 on U :

w>
∂U

∂w
(w, t) = U (w, t) , w>

∂2U

∂w∂t
(w, t) =

∂U

∂t
(w, t) ,

w>
∂2U

∂w∂w>
(w, t) = 0, ∇2U (w, t) = ∇2U (w, t)>

It turns out the fixed cost function U has at least (J + 1)+J (J + 1) /2 free parameters in

order to be flexible. Similarly, the variable cost function V must have at least (J + 2) +

(J + 1) (J + 2) /2 free parameters. In total, a 2FFF cost function must have at least

1 + 3 (J + 1) + J (J + 1) free parameters. Moreover, in order to identify V as a variable

cost function, we impose

V
(
w0, 0, t0

)
= 0.

Note that (21) and (22) imply (20), but not conversely.

6. Econometric treatment of cost heterogeneity

In our most general model, the level of fixed input is not necessarily optimal and has

an impact on both the fixed and variable cost:

cr
(
w, xf , y, t

)
= ur

(
w, xf , t

)
+ vr

(
w, xf , y, t

)
,
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which is somewhat embarrassing as we do not observe the level of xf , but only total

input quantity x. However, our objective is not to estimate firm specific functions vr

and ur but rather their conditional mean given the value of the observed explanatory

variables w, y and t, so we consider:

V (w, y, t) ≡ E
[
vr
(
w, xf , y, t

)
|w, y, t

]
,

U (w, t) ≡ E
[
ur
(
w, xf , t

)
|w, t

]
.

Here integration is over unobserved heterogeneity with respect to the joint distribution

of xf and the individual cost functions vr and ur. Using these definitions, we rewrite the

model as follow:

cr
(
w, xf , y, t

)
= γU

(
w, xf , t

)
U (w, t) + γV

(
w, xf , y, t

)
V (w, y, t) , (23)

where the functions γU and γV are defined by:

γU
(
w, xf , t

)
≡
ur
(
w, xf , t

)
U (w, t)

, γV
(
w, xf , y, t

)
≡
vr
(
w, xf , y, t

)
V (w, y, t)

,

and satisfy E
[
γU |w, t

]
= E

[
γV |w, y, t

]
= 1. Note that the covariance between γU and γV

can a priori take any value. However, we derive an important statistical relationship

between the fixed and variable cost functions γUU and γV V.

Proposition 5. Under the assumptions that, (a) individual heterogeneity in the fixed

and variable cost functions is independent of xf ; (b) the fixed inputs xf are positive and

are optimally allocated; then:

(i) the conditional covariance cov
(
γU , γV |w, y, t

)
is nonpositive;

(ii) the conditional variance matrix V [γ|w, y, t] is singular.

When the fixed inputs are unobserved we will not be able to estimate functions ur and

vr, and we cannot test whether ∂cr/∂xf = 0 is satisfied or not. However, we will be able

to estimate V [γ|w, y, t] and cov
[
γU , γV |w, y, t

]
. If the statistical test leads to rejection of

the singularity of V [γ|w, y, t] or cov
[
γU , γV |w, y, t

]
≤ 0, then we can deduce that either

the fixed inputs are not optimally allocated (Proposition 5), or that the production

technology has the specific structure given in (16). The level of the fixed cost γUU and

the level of the variable cost γV V are certainly positively correlated with any dataset:

both the fixed and the variable cost increase over time, and firms with a high fixed cost

certainly produce more than smaller firms and also have a higher variable cost. Hence
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the positive correlation between γUU and γV V. Proposition 5, however, states that there

is a tradeoff —a negative correlation —between the fixed and the variable cost for given

values of the explanatory variables (w, y, t) . Such a tradeoff cannot be directly observed

in a dataset, because it pertains to unobserved heterogeneity.With panel data, the issue

of interrelated heterogeneity is often discarded, one exception is Gladden and Taber

(2009) who considered it in estimating linear wage equations. In contrast to Gladden

and Taber (2009), we derive the sign of the covariance from a structural nonlinear model.

Let us now explain our strategy for estimating this covariance along with other sta-

tistics of interest. We have to explicitly introduce the parameters in the notations of

the cost function and rewrite the observed cost level cnt as follow:

cnt = γUntU (wnt, t;α) + γVntV (wnt, ynt, t; β) + ent, (24)

where n = 1, . . . , N denotes the sector, t = 1, . . . , T represents time. The random term

ent is iid, satisfies E [ent|wnt, ynt, t] = 0 and has constant variance σ2
c . It is also assumed

that ent is uncorrelated with γnt ≡
(
γUnt, γ

V
nt

)> and any right hand side regressors. Equiv-
alently, we can write our empirical model as:

cnt = U (wnt, t;α) + V (wnt, ynt, t; β) + εcnt. (25)

with the composite error term:

εcnt ≡
(
γUnt − 1

)
U (wnt, t;α) +

(
γVnt − 1

)
V (wnt, ynt, t; β) + ent. (26)

Note that E [εcnt|wnt, ynt, t] = 0. We also assume that

V [γnt|w, y, t] ≡ Σ =

(
σ2
U σUV

σUV σ2
V

)
, (27)

and V
[
γntγ

>
ms|w, y, t

]
= 0, for any n 6= m and t 6= s. This model is an extension of

Swamy’s (1970) random coeffi cient model to our nonlinear setup with individual and

time varying random coeffi cients. The values of γnt can be considered as incidental

parameters, because they are not fundamentally interesting (and cannot be identified).

Their distribution however is informative. The joint distribution of γnt reflects the way

the variable and fixed cost vary together. The covariance between γUnt and γ
V
nt allows to

discriminate between the case of optimally and nonoptimally allocated fixed input and

whether fixed cost has an impact on the marginal cost of production and the markup

via (17). The parameters of interest are the technology parameters θ ≡
(
α>, β>

)>
and
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the variance matrix Σ.

In principle, all estimates of the technology parameters θ and the covariance matrix

can be obtained simultaneously by solving (numerically) the likelihood maximization

or the nonlinear least squares problem.9 However, these objective functions are highly

nonlinear in θ, and it turns out that nonlinear numerical algorithms often do not converge

to a solution. We avoid these numerical problems, and use a two-stage estimation

procedure. First, the technological parameters θ are consistently estimated (without

identification of Σ and σ2
c) by minimizing the sum of squared residuals:

θ̂ = arg min
α,β

∑
n,t

[cnt − U (wnt, t;α)− V (wnt, ynt, t; β)]2 .

As the random term εcnt exhibits heteroscedasticity and serial correlation, we rely on the

Newey-West (1987) estimator for estimating the variance matrix V
[
θ̂
]
.

In the second-stage, two equivalent estimation methods are again available: Maxi-

mum Likelihood (ML) and Least Squares (LS). The conditional variance of ε̂cnt can be

expressed as (using (26)):

E
[
(ε̂cnt)

2 |wnt, ynt, t
]
≡ 4nt(σ

2
c ,Σ, θ̂) (28)

= σ2
c + σ2

UU
2 (wnt, t; α̂) + σ2

V V
2
(
wnt, ynt, t; β̂

)
+ 2σUV U (wnt, t; α̂)V

(
wnt, ynt, t; β̂

)
.

It turns out that the parameters σ2
c , σ

2
U , σ

2
V and σUV of (28) can be estimated by an

OLS regression of the squared NLS residuals

(ε̂cnt)
2

=
[
cnt − U (wnt, t; α̂)− V

(
wnt, ynt, t; β̂

)]2
(29)

on a constant, Û2, V̂ 2 and Û V̂ . If we assume that the heterogeneity vector γnt and the

error term ent follow some parametric distribution, then the estimated covariance matrix

can be obtained by maximizing the likelihood function. Both second-stage estimation

methods are asymptotically equivalent, but their estimation outcomes may differ: first,

because the ML is more effi cient than OLS if the distribution of the random terms is

9 The NLS estimator of
(
θ, σ2c ,Σ

)
could be obtained (in one step) by minimizing the following sum of squared residuals:∑

n,t

[
εc2nt (θ)− σ2 − σ2UU2 (wnt, t;α)− σ2V V 2 (wnt, ynt, t;β)− 2σUV U (wnt, t;α)V (wnt, ynt, t;β)

]2
.

An alternative estimator of parameters θ, σ2c and Σ is the maximum likelihood estimator. Under the normality assumption
of the random term εcnt ∼ N

(
0,4nt

(
θ, σ2c ,Σ

))
, we can write

logL(θ, σ2c ,Σ) = −1

2

∑
n,t

{
log (2π) + log4nt

(
θ, σ2c ,Σ

)
+4nt

(
θ, σ2c ,Σ

)−1
(εcnt (θ))2

}
.
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well specified; second, because the covariance matrix Σ is not restricted to be positive-

definite in the OLS regression, but this restriction is imposed in most ML estimation

algorithms.10 As this matrix may well be singular (Proposition 5), we prefer the OLS

approach.

Our estimation approach can be viewed as a sequential two-stage M-estimation, where

in the first-stage θ̂ is obtained by solving a NLS problem and then, given θ̂, the estimates

σ̂2, Σ̂ are obtained by OLS. This second stage estimator is simple and consistent if

the first-stage estimator is consistent for θ, see Cameron and Trivedi (2005, Section

6.6). However, the asymptotic distribution of Σ̂ given the estimation of θ̂ is diffi cult to

establish. Hence we use the panel bootstrap for deriving the standard deviations of the

second-stage estimator.11

7. The empirical investigation

In this section, we first summarize the empirical models and strategies, we then present

briefly the data set and discuss the estimation results.

7.1 The empirical models and estimation strategies

For the empirical fixed and variable cost functions U and V, we assume Translog func-

tional forms denoted by UTL and V TL. As seen in Proposition 4, the traditional Translog

cost function CTL satisfies CTL (w, 0, t) = 0 and is not compatible with the occurrence of

a fixed cost (in the best case where βyy ≤ 0). It is, however, quite simple to generalize

the Translog specification by adding a fixed cost function to the variable Translog cost

function (the two-points flexible form):

CTL(w, y, t;α, β) = UTL(w, t;α) + V TL(w, y, t; β),

where

UTL (w, t;α) = exp{α0 + α>w lnw + αtt+
1

2
lnw>Aww lnw + lnw>Awtt+

1

2
αttt

2}, (30)

10 It can be shown that the first order conditions of ML are identical to the moment conditions of OLS.
11 We assume that the errors are i.i.d. over individuals (but not over time). The panel bootstrap performs a classical
paired bootstrap that resamples only over n and not over t.
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and

V TL(w, y, t; β) = exp{β0 + β>w lnw + βy ln y + βtt+
1

2
lnw>Bww lnw

+ lnw>Bwy ln y + lnw>Bwtt+
1

2
βyy (ln y)2 + βytt ln y +

1

2
βttt

2}.

We impose linear homogeneity and symmetry in w using the following 2+J+(J + 1) J/2

parametric restrictions on UTL:

ι>αw = 1, ι>Awt = 0, ι>Aww = 0, Aww = A>ww. (31)

There are 1 + J + (J + 1) J/2 free parameters left in UTL. Similarly, the variable cost

function V TL has 3 + 2J + (J + 1) J/2 free parameters which satisfy

ι>βw = 1, ι>Bwt = ι>Bwy = 0, ι>Bww = 0, Bww = B>ww. (32)

Note that the logarithmic transformation of the total cost function is not useful anymore

for linearizing the nonlinear Translog specification (unless UTL ≡ 0). For J = 4, the fixed

cost function has 15 free parameters to which are added the 21 free parameters of the

variable cost function.

Given the two-points flexible specification, we estimate the parameters α and β by

using NLS based on (25) in the first-stage. The second-stage consists in the estimation

of the variance matrix Σ and σ2
c by using OLS based on (28) and (29). The clas-

sical Translog cost function which includes only the variable cost function V TL (and

assumes that UTL ≡ 0) is also considered for comparison. We consider further empiri-

cal models that include the system estimation by adding the input demand equations

(obtained by applying Shephard’s lemma to CTL), as well as the model estimated in

first-differences. Substantial gains in effi ciency can be realized by system estimation,

because more observations are available. The first-difference estimation model is more

robust against non-stationarity of the series and unobserved individual fixed effects.

Henceforth, Model I denotes the single equation model without any fixed cost. Model II

is the baseline model where the cost function includes both a fixed and a variable part

(the two-points flexible form). More effi cient frameworks are Model III (in level) and

Model IV (in difference), which include the cost and the input demand functions. We

note that the choice of starting values is crucial for reaching the optimum in the case of
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system NLS.12

7.2 The data and empirical results

We use the NBER-CES manufacturing industry database for our empirical study.13

This database records annual information on output ynt, output price pnt, and the input

levels xnt, together with input prices indices wnt, for 462 U.S. manufacturing industries

(at the six-digit NAICS aggregation level) and covers the period 1958 to 2005. See Chen

(2012) for descriptive statistics and details on the computations made for generating the

depreciation rate, interest rate, and the user cost of capital. Information is available for

four inputs: capital, labor, energy and intermediate materials.

We begin by commenting the first-stage estimation results for models I to IV. Instead

of reporting estimates for all Translog parameters, we only select some informative

estimated coeffi cients and statistics. An important coeffi cient is the parameter βyy,

which is crucial for Proposition 5. Given the estimated Translog coeffi cients, we compute

statistics such as the share of the fixed cost in the total cost U/C, the ratio of the

output price to the predicted marginal cost of production p/ (∂C/∂y) which measures

the markup, and the rate of returns to scale 1/ε (C, y), where ε (C, y) ≡ ∂ lnC/∂ ln y

denotes the elasticity of costs with respect to output.

As mentioned in Section 5, neglecting the fixed cost is a source of bias. By comparing

the estimation outcomes of Model I and Model II, we note that the results of the two

models differ with respect to several key points. First, the parameters of the fixed

cost function (α) in Model II are significantly different from zero, which indicates the

existence of fixed costs in the production process. Second, the model without a fixed

cost (Model I) suggests that the industries exhibit decreasing returns to scale, but the

model with a fixed cost (Model II) suggests increasing returns to scale. The bias on

the degree of returns to scale is due to the overestimation of the elasticity of cost and

neglect of the fixed cost (see Section 4). Finally, the overestimation of marginal costs

by Model I leads to underestimation of the markup: the median of p/ (∂C/∂y) in Model

12 For the single equation estimation (Model I and II), the starting values are set arbitrarily to zero. For the system
estimation in levels (Model III), the starting values are the estimates obtained from Model II. For the system estimation
in first differences (Model IV), the starting values are obtained from the estimation of the cost function in first-differences.
13 The dataset can be downloaded at: http://www.nber.org/data/nbprod2005.html
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Table 1. Summary of estimation results

Model I II III IV
1st q - 0.19 0.27 0.48

U/C median - 0.52 0.51 0.76
3rd q - 0.91 0.77 0.94
1st q 1.19 1.32 1.37 1.58

p/ (∂C/∂y) median 1.36 1.87 1.78 2.63
3rd q 2.47 6.60 2.74 5.73
1st q 0.69 1.01 1.01 1.10

1/ε (C, y) median 0.89 1.40 1.37 2.07
3rd q 0.98 6.04 2.71 7.07

βyy coeff -0.05 -0.14 -0.15 -0.32
t-value -2.05 -4.21 -3.11 -3.85

σ2
U coeff - 0.54 30.83 1.09

t-value - 1.67 1.29 0.15
σ2
V coeff - 0.02 0.27 0.12

t-value - 1.95 1.96 1.27
σUV coeff - -0.32 -13.04 -1.19

t-value - -0.91 -1.43 -0.11
σ2
c coeff 3.7e+6 1.9e+6 1.3e+6 2.1e+6

t-value - 2.09 0.24 0.66
Notes: Rows 2 to 11 report the estimated parameter values and the

corresponding t-statistic for the hypothesis that the parameter is equal

to zero. Rows 12 to 20 report the median value of the corresponding

statistic over all observations as well as the 1st and 3rd quartiles.

I is about 36% lower than the one predicted by Model II.14

Table 1 also shows that empirical results obtained from models II to IV exhibit some

regularities. First, the estimated coeffi cient of βyy is significantly negative in all cases,

which implies that the limit of the classical Translog variable cost function is zero as y

approaches 0. Second, all models predict that the fixed cost represents a considerable

share of total cost. The median of estimated shares U/C varies in the range between 51%

and 76%. Third, the estimation results also suggest that the industries exhibit increasing

returns to scale. The median of the rate of returns to scale, ε (C, y)−1 ranges between

1.4 and 2.1. Fourth, there is a significant difference between the selling price and the

predicted marginal cost of production, the median of estimated markup varies from 1.8

to 2.6. However, we note that the results of Model IV (with data in first-differences)

differ quantitatively from those of Model II and Model III (with data expressed in levels).

14 We also reestimate Model I after appending a linear fixed cost term w>α̃ in the specification. The corresponding
empirical results are not reported, but lie in between those obtained for Model I and II.
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Now, we focus on the fixed cost share (U/C), in particular on its evolution over time.

These series (averaged over all industries) are depicted on Figure 5. We note that for all

the empirical models, the fixed cost shares are decreasing over time. This may reflect

firms’efforts to increase production flexibility. The series generated by model II (where

the input demands system is not included in the estimation), exhibit a structural break

around 1980. For other models, the decline of fixed cost shares over time is smoother.

However, the decrease is less significant in the first-differenced model (Model IV).

When it comes to the second-stage estimation, the estimates of σ2
U , σ

2
V , σUV and σ

2
c ,

are somewhat more divergent across the models. However, we see that the variance of

the fixed cost heterogeneity γU is always larger than the variance of the variable cost

heterogeneity γV . The covariance between heterogeneities is found to be negative and

the covariance matrix Σ is close to singular for all models, which is conform to what

we expect from Proposition 6. The second-stage estimation results, however, are not

precisely estimated and are not statistically significant. This result may be due to our

overly restrictive assumption of random heterogeneity in the fixed and variable cost

function specification (23). Economically, this heterogeneity may well be correlated

with further explanatory variables which are individual specific (like for instance the

level of production, the type of industry, etc.). So we conduct further analysis in the

next subsection.
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Figure 5. Fixed costs shares over time

7.3 Estimation with industry specific dummies

Although Models II to IV with random heterogeneity yield some interesting results on

the scope of fixed cost and returns to scale, the interaction between fixed and variable

costs was not precisely estimated. This may due to the fact that heterogeneity is not

purely random but correlated with sectorial characteristics as the level of production

or the level of fixed and variable cost. We pursue the investigation a step further and

introduce individual-specific dummies into Model IV. The most flexible specification

replaces γUnt and γVnt in regression (24) by 2N individual-specific parameters. In order

to limit overparameterization, we introduce instead dummies for more broadly defined

groups of industries. There are different ways to define these groups, for instance, in

the spirit of Mundlak’s (1978) correlated random coeffi cient model, individuals can be

grouped w.r.t. the average value of their covariates. For the industry database, however,

a more natural clustering criterion, is to group the 462 manufacturing sectors available

at the six-digit NAICS level into 20 three-digit NAICS sectors. See Table 2 for a list of
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the 3-digit industries.15

Formally, we introduce the multiplicative dummy variables γUj and γ
V
j for j = 1, ..., 20

in place of the random parameters of (24) which becomes:

cnt = γUj U
TL(wnt, t;α) + γVj V

TL(wnt, yntt; β) + ent. (33)

Since the Translog cost function also includes the terms α0 and β0, all the parameters

cannot be identified separately, unless we consider two additional restrictions. Since

by construction, we have E
[
γU |w, t

]
= E

[
γV |w, y, t

]
= 1, it is natural to impose the

normalization conditions:
1

20

20∑
j=1

γUj =
1

20

20∑
j=1

γVj = 1,

which allow to identify all parameters. In this case, the estimated parameters γUj and γ
V
j

represent the industry-specific deviation in percentage from the average. For instance,

if the estimated value of γUj is significantly above one and the estimated value of γ
V
j is

significantly below one, this indicates that the industry group j incurs more fixed and

less variable costs than average. In this framework, the interaction between the fixed

and variable components of the cost function is characterized by the variation of γUj

and γVj over industry groups. We examine the empirical correlation between γ
U
j and γ

V
j

along with group-specific shares of fixed cost, degree of returns to scale, markups and

rate of technical change.

We estimate the parameters of the extended Model IV and report the estimation

results in Table 2. Column 3 and 4 of Table 2 report the estimated coeffi cients of γUj

and γVj . Our estimation results indicate, for instance, that compared to the average, the

industry group NAICS 311 (food) operates with 24% less fixed cost and 4% less variable

cost than the average. We also note that industries with lower than average fixed cost

generally have higher than average variable cost and conversely. Contrary to the above

random effect models, the parameters reflecting cost heterogeneity are now statistically

significant.

Columns 5 to 10 report the median (for each group) of the fixed cost share U/C,

the markup p/ (∂C/∂y), returns to scale 1/ε (C, y), and technical change measured as

15 At the three-digit NAICS level, there are actually 21 manufacturing industry groups. We merge the smallest (in terms
of the number of subsectors) NAICS 324 industry group (petroleum and coal products manufacturing) with NAICS 325
industry group (chemical manufacturing).
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∂ lnC/∂t, ∂ lnU/∂t and ∂ lnV/∂t. For the NAICS 311 industry group, the estimates

indicate that the fixed cost represents 25% of the total production cost, with almost

constant returns to scale and a markup of 68%. In average over all industries, the

results confirm former findings with strong evidence for fixed cost, increasing returns to

scale, and markup pricing. We also find evidence for the conjecture brought forward in

Section 4: industries with higher fixed cost also exhibit higher markups and returns to

scale.

Regarding the rate of technical change, our results on ∂ lnV/∂t show that the variable

cost is on average decreasing by 0.9% over time with little variance over industries. In

contrast, the fixed cost increases with time i.e. ∂ lnU/∂t = 0.04. Altogether, our results

are in line with those obtained by Diewert and Fox (2008) who found modest empirical

evidence for technical change in US manufacturing. Our interpretation is that the

deterministic trend only partially captures technical progress, and that one important

part of technical change is stochastic and embodied in the unobserved fixed inputs (the

xf). These fixed inputs contribute to increase the fixed cost and decrease the variable

cost and, as a consequence of our approach, this random component of technical change

is captured by the negative correlation between γUj and γ
V
j .
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Figure 6. Scatterplot of γ̂Uj and γ̂
V
j .

Table 3 reports the empirical correlations between different estimated statistics. The

main result is that the correlation between γ̂Uj and γ̂Vj is negative, and quite strong

(−0.79). The scatterplot of γ̂Uj and γ̂Vj is depicted on Figure 6. These results are in

line with Proposition 5. The extension of Model IV to include industry-specific fixed

and variable cost heterogeneity now allows us to find more precise empirical results

than those obtained with random heterogeneity. The separable structure of Proposition

3, (15), which implies no interaction between fixed and variable cost, is statistically

rejected: technology G
(
xv, xf

)
fits the data better than F

(
xv +K

(
xf
))
for any function

K.

We also find that the fixed-cost heterogeneity is positively correlated with most of

the statistics especially with the markup and the rate of returns. This coincides with

our discussion of Section 4 on the dangers of neglecting fixed cost. Not surprisingly,

the correlations involving γVj have the opposite sign to those involving γ
U
j . The strong

positive correlation between γUj U/C and p/ (∂C/∂y) seems to be contrary to the pre-

diction made by the theory of contestable markets (Baumol, Panzar and Willig, 1982).
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Table 3. Correlation matrix

γUj γVj γUj
U

C

p

∂C/∂y

1

ε (C, y)

∂ lnC

∂t

∂ lnU

∂t

∂ lnV

∂t
yj crj

γVj -0.79

γUj
U

C
0.86 -0.84

p

∂C/∂y
0.80 -0.77 0.83

1

ε (C, y)
0.86 -0.67 0.79 0.95

∂ lnC

∂t
0.81 -0.78 0.97 0.88 0.83

∂ lnU

∂t
-0.07 0.31 0.01 0.28 0.26 0.20

∂ lnV

∂t
0.22 0.02 -0.03 0.26 0.29 0.09 0.56

yj 0.58 -0.58 0.29 0.27 0.28 0.18 -0.55 0.22

crj 0.23 -0.39 0.20 0.23 0.07 0.20 -0.16 0.14 0.58

Hj 0.24 -0.45 0.25 0.21 0.01 0.24 -0.20 0.17 0.61 0.92
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However, it can be explained in the light of our framework: a higher fixed cost reduces

the variable cost (at given level of production), a relationship which is reflected by the

negative correlation between γUj and γ
V
j . This negative correlation is in turn inherited

by γUj U/C and ∂C/∂y.

These results help to understand why specifications neglecting the fixed cost (or

including an inflexible parameterization of the fixed cost) are likely to overestimate the

marginal cost of production and underestimate the markup and the rate of returns to

scale. The omission of the fixed cost leads to attribute neglected variations in fixed

costs (which according to Table 3 are positively correlated with output) to the variable

cost function which is increasing in y. Like in the case of an omitted variable bias, the

variable cost function (and especially its partial derivative w.r.t. y) will catch up the

part of the fixed cost function which is correlated with production and so, it will be

biased upwards. The positive correlation corr
(
γUj ; yj

)
= 0.58 explains the gap between

the results obtained with the standard and extended Translog specifications (see Table

1). In Model I, the neglected fixed cost is directly responsible for the low rate of returns

to scale and moderate markups obtained with this specification.

Regarding technical change, we find that ∂ lnC/∂t is positive and highly correlated

with γUj , γ
V
j , γ

U
j U/C and p/ (∂C/∂y) , which means that fixed cost and market power

preclude productivity growth (as in Arrow, 1962). Surprisingly, neither ∂ lnU/∂t nor

∂ lnV/∂t are strongly correlated with market power. This paradox is solved if we go

back to the definition of technical change, in which the share of fixed cost plays an

important role:
∂ lnCj
∂t

=
∂ lnU

∂t

γUj U

Cj
+
∂ lnV

∂t

(
1−

γUj U

C

)
,

and introduces correlation between ∂ lnCj/∂t and γUj and γ
U
j U/Cj. We also investigate

the link between the fixed cost, the size and the concentration of industries. Table 3

also reports correlations between the fixed cost and the average output level (over time

and subsectors within industry j), the concentration ratio for the 20 largest firms crj ,

and the Hirschman-Herfindahl index Hj .
16 We find a positive correlation between the

fixed cost share and the industrial concentration. These results suggest that industries

with a higher fixed cost and a lower variable cost, produce more in average, and are

16 The concentration data for 2002 are obtained from the U.S. Census Bureau.
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more concentrated.

8. Conclusion

This paper investigates technologies in which fixed inputs can be imperfectly substituted

to variable inputs, and we propose extended production and cost functions compatible

with the occurrence of a fixed cost. Many available flexible specifications, like the

Translog cost function, restrict the fixed cost to be equal to zero. Our extended speci-

fication of the Translog is compatible with arbitrary levels of fixed cost, and allows for

interactions between the fixed and the variable cost. Our empirical findings highlight

the importance of fixed cost which represent about 20% to 60% of total cost in the

manufacturing industries and tend to decline to decline over time. Our estimates also

supports our extended framework which explains why industries with higher fixed cost,

in average have lower variable cost, higher returns to scale and markups. Conformably

to our theoretical prediction, we also find that the classical Translog cost function un-

derestimates the rate of returns to scale and the markup.

A natural extension of our framework would be to examine explicitly strategic inter-

actions between firms in their joint decision on product price and production capacity

(fixed cost). This would potentially allow to revisit the link between fixed cost and

barriers to entry.

9. Appendix: proof of the results

Proof of Proposition 1. From the definition of XF and XF 6= ∅ it directly follows

that

cr
(
w, xf , 0

)
= min

xv≥0

{
w>xv + w>xf : F

(
xv + xf

)
≥ 0
}

= w>xf ≥ 0,

and so vr
(
w, xf , 0

)
= cr

(
w, xf , 0

)
− w>xf = 0.

(i) The variable inputs must satisfy the nonnegativity constraints xv ≥ 0. If these

constraints are not binding at the optimum, we can write

cr
(
w, xf , y

)
= min

xv>0

{
w>xv + w>xf : F

(
xv + xf

)
≥ y
}

= vr
(
w, xf , y

)
+ w>xf ,

where vr
(
w, xf , y

)
≡ minx>xf

{
w>x : F (x) ≥ y

}
− w>xf > 0. Then cr

(
w, xf , y

)
= C (w, y)

and by Shephard’s lemma x∗v
(
w, xf , y

)
= X∗v (w, y) .
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(ii) If some constraints xv,j ≥ 0 are binding at the optimum, the total input x can be

rewritten as

x = xv + xf =

(
x̃
x

)
,

with x̃i = xv,i + xf,i for xv,i > 0 and xj = xf,j for xv,j = 0. Vector w is partitioned

accordingly as w =
(
w̃>, w>

)>
. Then

cr
(
w, xf , y

)
= min

xv≥0

{
w>xv + w>xf : F

(
xv + xf

)
≥ y
}

= min
x̃>0

{
w̃>x̃+ w>x : F (x̃, x) ≥ y

}
= min

x̃>0

{
w̃>x̃ : F (x̃, x) ≥ y

}
+ w>x = Vr (w̃, x, y) + w>x.

�

Proof of Proposition 2.

(i) If xf ∈ XG then xv = 0 is admissible and so

vr
(
w, xf , 0

)
= min

xv≥0

{
w>xv : G

(
xv, xf

)
≥ 0
}

= 0.

The assumption that G is single valued and increasing implies that G
(
xv, xf

)
> 0 for

and xv > 0 and xf ∈ XG. Then vr
(
w, xf , y

)
= w>x∗v

(
w, xf , y

)
> 0 for y > 0 because

w > 0 at least one element of x∗v
(
w, xf , y

)
is strictly positive.

(ii) For y′ > y, andG increasing in xf , it implies that
{
xv : G

(
xv, xf

)
≥ y′

}
⊂
{
xv : G

(
xv, xf

)
≥ y
}

and as a consequence

vr
(
w, xf , y

′) = min
xv≥0

{
w>xv : G

(
xv, xf

)
≥ y′

}
> vr

(
w, xf , y

)
.

(iii) Similarly, x′f > xf and G increasing in
(
xv, xf

)
, implies that

{
xv : G

(
xv, xf

)
≥ y
}
⊂{

xv : G
(
xv, x

′
f

)
≥ y
}
and as a consequence

vr
(
w, x′f , y

)
= min

xv≥0

{
w>xv : G

(
xv, x

′
f

)
≥ y
}
< vr

(
w, xf , y

)
.

�

Proof of Proposition 3.

Part (i), Necessity. For an exogenous level of xf ∈ XG, we have

vr
(
w, xf , y

)
= min

xv≥0

{
w>xv : y = F

(
xv +K

(
xf
))}

= min
xv≥0

{
w>xv + w>K

(
xf
)

: y = F
(
xv +K

(
xf
))}
− w>K

(
xf
)

= min
X≥K(xf )

{
w>X : y = F (X)

}
− w>K

(
xf
)

= vy (w, y)− w>K
(
xf
)
.

The last line follows from our assumption that x∗v (w, y) > 0 at the optimum. Defining
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v (w, y) ≡ vy (w, y)−vy
(
w, 0+

)
ensures that v

(
w, 0+

)
= 0. Defining ur

(
w, xf

)
≡ vy

(
w, 0+

)
−

w>K
(
xf
)

+ w>xf ensures that cr
(
w, xf , y

)
= ur

(
w, xf

)
+ v (w, y) .

Conversely, we can recover the convex hull of all inputs producing y, for a given level

of xf , by solving

min
w

{
w>xv − vy (w, y) + w>K

(
xf
)}

.

The corresponding J first order conditions for an inner solution are given by

xv +K
(
xf
)
− ∂vy
∂w

(w, y) = 0,

which can be solved with respect to w/wJ and y to obtain

y = F
(
xv +K

(
xf
))
.

If G is quasi-concave in xv, this convex hull corresponds to the isoquants of G.

Part (ii). Necessity. With (15), the first order conditions for an inner solution in xf

to the cost minimization problem are given by
∂ur
∂xf

(
w, xf

)
= w,

and do not depend on y and so the solutions x∗f (w). With (16), the first order conditions

for an inner solution in xv are

w = λ
∂F

∂xv

(
xv +K

(
xf
))

y = F
(
xv +K

(
xf
))
,

where λ denotes the Lagrange multiplier. The solution in xv to this system takes the

form x∗v
(
w, xf , y

)
= X∗ (w, y) − K

(
xf
)
and so the restricted cost function (15), with

vy (w, y) ≡ w>X∗ (w, y) and ur
(
w, xf

)
= w>xf − w>K

(
xf
)
. Then x∗f is independent of y.

Suffi ciency. If x∗f depends only upon w, then the first order conditions for an inner

solution, given by
∂ur
∂xf

(
w, xf

)
+
∂vr
∂xf

(
w, xf , y

)
= 0

imply that
∂2vr
∂xf∂y

(
w, xf , y

)
= 0

and so cr
(
w, xf , y

)
= ur

(
w, xf

)
+ v (w, y) . �

Proof of Proposition 4. We rewrite CTL as

CTL (w, y, t) = b (w, t) yβy+lnw>Bwy+ 1
2
βyy ln y+βytt,
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with

b (w, t) ≡ exp

(
β0 + β>w lnw + βtt+

1

2
lnw>Bww lnw + lnw>Bwtt+

1

2
βttt

2

)
> 0.

If βyy ≤ 0, then

lim
y→0+

CTL (w, y, t) = 0, (34)

whereas if βyy > 0,

lim
y→0+

CTL (w, y, t) = +∞.

The cost function is nondecreasing in y > 0 iff
∂CTL

∂y
(w, y, t) =

(
βy + lnw>Bwy + βyy ln y + βytt

) CTL (w, y, t)

y
≥ 0.

If βyy > 0, then

lim
y→0+

∂CTL

∂y
(w, y, t) < 0,

and ∂CTL/∂y becomes positive only for y suffi ciently large. �

Proof of Proposition 5. There are two types of unobserved heterogeneities here:

one due to unobserved xf and one due to heterogenous functional forms for ur and vr

over individuals. For simplicity we use the subscript r for denoting this heterogeneity.

Let fu|x denote the conditional density function of ur
(
w, xf , t

)
|xf . Under Assumption

(a) we can write fu|x = fu where fu denotes the marginal density of ur. Let us define the

average fixed and variable cost functions (over all firms in our sample) as

u
(
w, xf , t

)
≡

∫
ur
(
w, xf , t

)
fu (r) dr

v
(
w, xf , y, t

)
≡

∫
vr
(
w, xf , y, t

)
fv (r) dr.

These functions still depend on the unobserved heterogeneity in xf , but individual het-

erogeneity in the cost functions ur and vr has been integrated out. Let us also consider

γU
(
w, xf , t

)
≡
u
(
w, xf , t

)
U (w, t)

, γV
(
w, xf , y, t

)
≡
v
(
w, xf , y, t

)
V (w, y, t)

,

and (we skip the arguments for simplicity)

c = γUU + γV V.

Using the optimality condition ∂cr/∂xf = 0, and Assumption (a), it follows that ∂c/∂xf =

0. So, conditionnaly on observations (w, y, t) , we write

cov
[
γU , γV

]
= cov

[(
c− γV V

)
/U, γV

]
= cov

[
−γV V/U, γV

]
= −V

U
V
[
γV
]
≤ 0

V
[
γU
]

= V
[(
c− γV V

)
/U
]

=
V 2

U2
V
[
γV
]
.
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(i) Under Assumption (a) we can write

cov
(
γU , γV

)
=

∫ (
γU − 1

)(
γV − 1

)
fxdxf

=

∫ (∫
R
γUfuv (r) dr − 1

)(∫
R
γV fuv (r) dr − 1

)
fxdxf

=

∫ ∫
R

(
γU − 1

)(
γV − 1

)
fuv (r) fx

(
xf
)
drdxf

=

∫ ∫
R

(
γU − 1

)(
γV − 1

)
fuv|x

(
r|xf

)
fx
(
xf
)
drdxf

= cov
(
γU , γV

)
,

where the fourth equality follows from the fact that under Assumption (a) we have

the independence of individual heterogeneity with respect to the level of fixed inputs:

fuv|x
(
r|xf

)
= fuv (r) . Putting things together, we have cov(γU , γV ) = cov

(
γU , γV

)
≤ 0.

(ii) Similarly, the variance matrices satisfy V [γ] = V [γ] and so

V [γ] =

[
V 2

U2V
[
γV
]
−VUV

[
γV
]

−VUV
[
γV
]

V
[
γV
] ]

,

whose determinant is zero. �
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