Introduction to Molecular Biology and Genomics

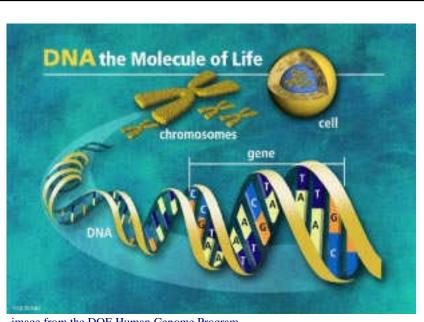
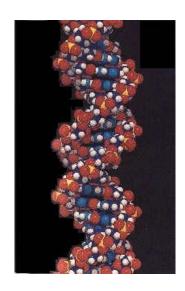


image from the DOE Human Genome Program http://www.ornl.gov/hgmis

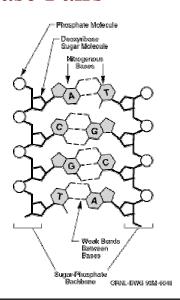
DNA

- can be thought of as the "blueprint" for an organism
- composed of small molecules called *nucleotides*
- four different nucleotides distinguished by the four *bases*: adenine (A), cytosine (C), guanine (G) and thymine (T)
- a polymer: large molecule consisting of similar units (nucleotides in this case)

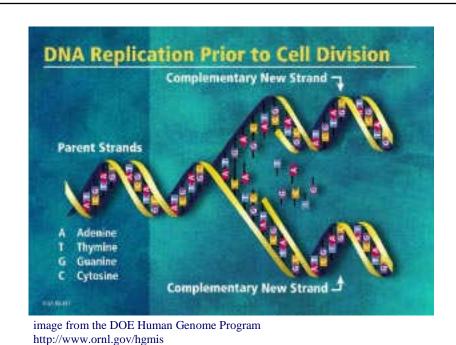

DNA

• a single strand of DNA can be thought of as a string composed of the four letters: A, C, G, T

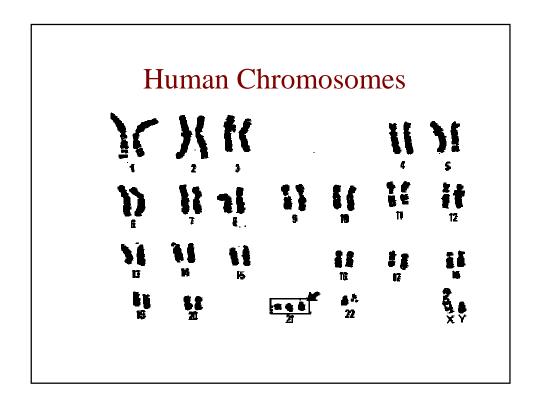
ctgctggaccgggtgctaggaccctgactgcc cggggccgggggtgcggggcccgctgag...


The Double Helix

• DNA molecules usually consist of two strands arranged in the famous double helix


Watson-Crick Base Pairs

in double-strand DNA
 A always bonds to T
 C always bonds to G


The Double Helix

- each strand of DNA has a "direction"
 - at one end, the terminal carbon atom in the backbone is the 5' carbon atom of the terminal sugar
 - at the other end, the terminal carbon atom is the
 3' carbon atom of the terminal sugar
- therefore we can talk about the 5' and the 3' ends of a DNA strand
- in a double helix, the strands are *antiparallel* (arrows drawn from the 5' end to the 3' end go in opposite directions)

Chromosomes

- DNA is packaged into individual *chromosomes* (along with proteins)
- *prokaryotes* (single-celled organisms lacking nuclei) have a single circular chromosome
- *eukaryotes* (organisms with nuclei) have a species-specific number of linear chromosomes

Genomes

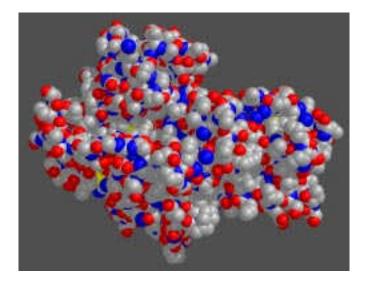
- the term *genome* refers to the complete complement of DNA for a given species
- the human genome consists of 46 chromosomes.
- every cell (except sex cells and mature red blood cells) contains the complete genome of an organism

Proteins

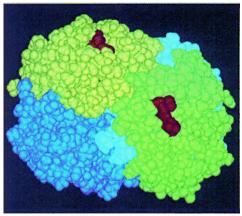
- proteins are molecules composed of one or more *polypeptides*
- a polypeptide is a polymer composed of *amino acids*
- cells build their proteins from 20 different amino acids
- a polypeptide can be thought of as a string composed from a 20-character alphabet

Protein Functions

- structural support
- storage of amino acids
- transport of other substances
- coordination of an organism's activities
- response of cell to chemical stimuli
- movement
- protection against disease
- selective acceleration of chemical reactions


Amino Acids

Alanine	Ala	Α
Arginine	Arg	R
Aspartic Acid	Asp	D
Asparagine	Asn	N
Cysteine	Cys	С
Glutamic Acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	lle	1
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	s
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

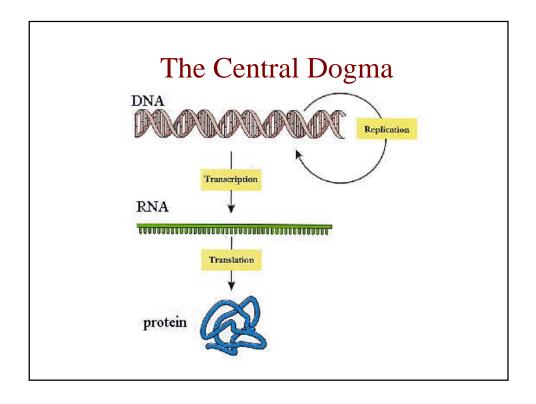

Amino Acid Sequence of Hexokinase

Hexokinase

Hemoglobin

- protein built from 4 polypeptides
- responsible for carrying oxygen in red blood cells

Genes


- genes are the basic units of heredity
- a gene is a sequence of bases that carries the information required for constructing a particular protein (polypeptide really)
- a gene is said to encode a protein
- the human genome comprises ~ 40,000 genes
 - there is some controversy about this number

Gene Density

• not all of the DNA in a genome encodes protein:

microbes 90% coding gene/kb

human 3% coding gene/35kb

RNA

- RNA is like DNA except:
 - backbone is a little different
 - usually single stranded
 - the base uracil (U) is used in place of thymine (T)
- a strand of RNA can be thought of as a string composed of the four letters: A, C, G, U

Transcription

- *RNA polymerase* is the enzyme that builds an RNA strand from a gene
- RNA that is transcribed from a gene is called *messenger RNA (mRNA)*
 - we'll talk about other varieties of RNA later in the course

The Genetic Code Second letter											
			U		c		Α		G		
	U	UUU	Phenyl- alanine	UCU	ucc	UAU UAC	Tyrosine	UGU UGC	Cysteine	U C	
	Ü	UUA UUG Leucine	UCA UCG	UAA UAG	Stop codon Stop codon	UGA	Stop codon Tryptophan	A G			
First letter	c	CUU		ccc	Proline	CAU	Histidine	CGU CGC		U C	
		CUA CUG	CCA	Proline	CAA CAG	Glutamine	CGA CGG	Arginine	A G		
First		AUU	Isoleucine	ACU ACC ACA ACG			AAU	Asparagine	AGU AGC	Serine	U C
	Α	AUA	Methionine; initiation codon		Inreonine	AAA AAG	Lysine	AGA AGG	Arginine	A G	
		GUU	Valine	GCU GCC GCA GCG	Alanine	GAU GAC	Aspartic acid	GGU GGC	61	U	
	G	GUA GUG	valine			GAA GAG	Glutamic acid	GGA GGG	Glycine	A G	

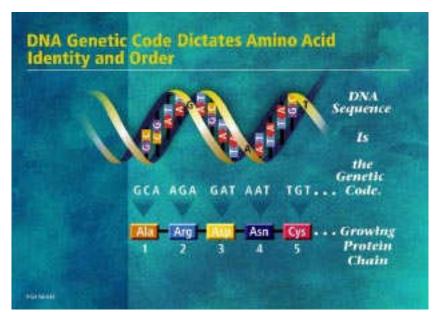
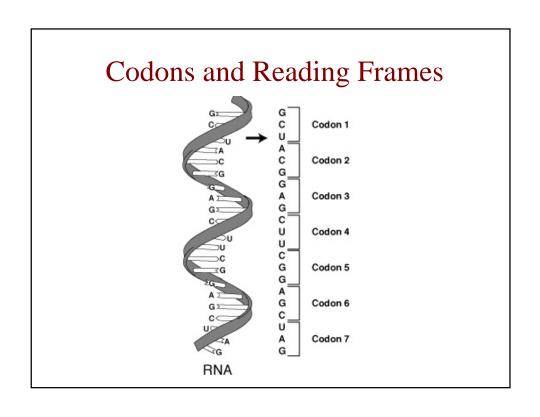
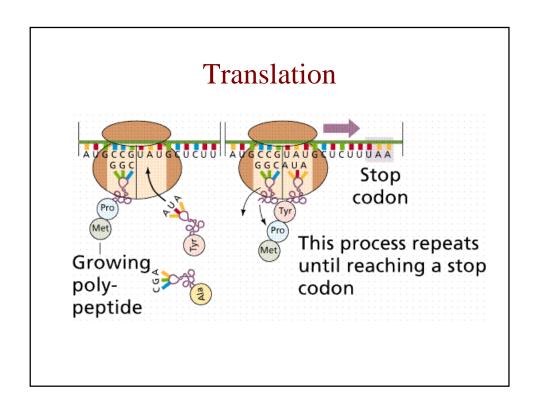
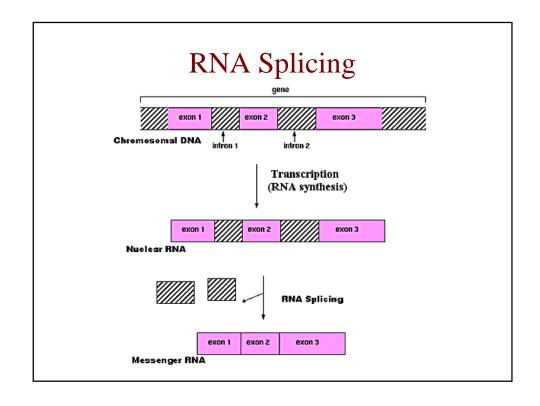
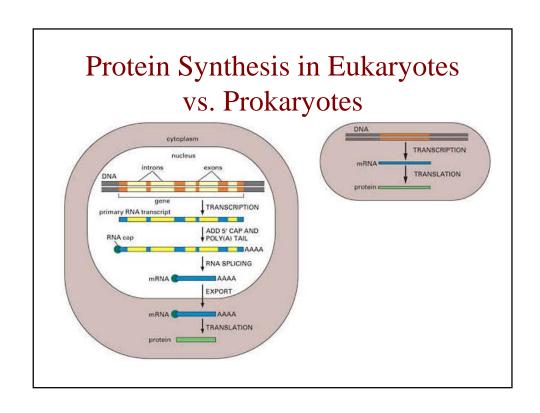
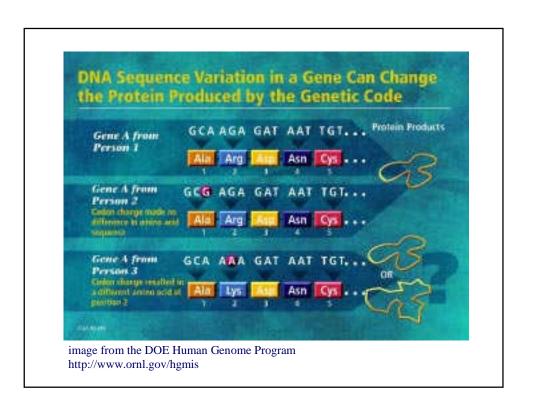




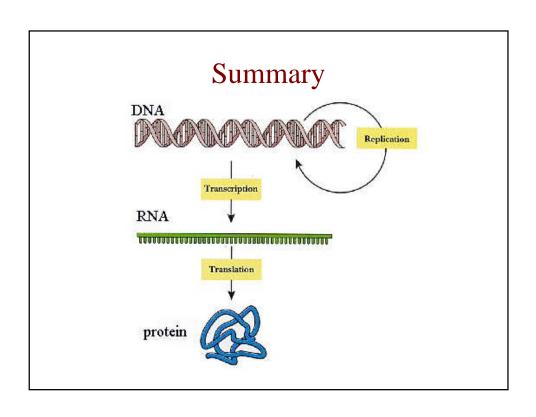
image from the DOE Human Genome Program http://www.ornl.gov/hgmis

Translation


- *ribosomes* are the machines that synthesize proteins from mRNA
- the grouping of codons is called the *reading frame*
- translation begins with the *start codon*
- translation ends with the stop codon






RNA Processing in Eukaryotes

- *eukaryotes* are organisms that have enclosed nuclei in their cells
- in eukaryotes, mRNA consists of alternating *exon/intron* segments
- exons are the coding parts
- introns are spliced out before translation

