DIAGNOSTIC MICROBIOLOGY

Libuše Kolářová Václava Adámková

Institute for Immunology and Microbiology, 1st. Fac.Med., Charles Univ. in Prague Czech Republic

Which factors should precipitate testing?

- CLINICAL SYMPTOMS
- CONTACT WITH INFECTED INDIVIDUALS
- TRAVEL HISTORY
- IMMUNE STATUS OF THE PATIENT (e.g. compromised patient -increase in the number of patients whose immune systems are compromised through underlying illness, chemotherapy, transplantation)
- DOCUMENTED PREVIOUS INFECTION
- SCREENING (e.g., outbreak situation)

How determine causative agent of the disease?

DIRECT OR INDIRECT METHODS

- •• **Direct methods** (e.g, microscopy, cultivation of specific nucleid acids, detection of specific antigens) = highly specific and unambigously recommendable, however, in some cases: either low sensitivity (microscopy) or expensive, but important the possibility of testing the sensitivity to ATB.
- •• Indirect methods (e.g. serological methods = sometimes can be of low sensitivity and specificity)

How determine causative agent of the disease?

- Examination of <u>exact</u> sample (dependence on clinical symptoms and signs!!!) <u>isolated:</u>
 - •• from exact site;
 - •• at the <u>exact time interval</u>;
 - •• <u>transport</u> to laboratory examination <u>under adequate conditions</u> (standards)
 - •• examined by <u>adequate methods</u> (standards)

MATERIAL

Clinical symptoms = specific material in which the causative agent can be detected

= isolation at exact time

e.g.,

stool

urine

blood

cerebrospinal fluid

sputum

organ biopsies, aspirates

smears, etc.

Body site	Specimen (examples) Test options (examples)		
Blood	whole blood, serum, anticoagulated blood, etc.	culture, QBC microhematocrit centruifugation, Buffy coat films, Knott concentration, membrane filtr. techniq. immunoassays, animal inoculation	
Bone narrow	aspirate	culture, histopathology, thick and thin smears, PCR	
CNS	spinal fluid, brain biopsy specimen	culture, wet examination, stained smears, immunoassays, PCR	
Eye	apirates from below surface, biopsy specimen	culture, wet preparation, stained smears,	
Skin	smears, scrapings, apirates from below surface, biopsy specimen	culture, histopathologic testing, squash preps (stained smears),	
Intestinal tract	fresh stool	culture, direct wet smear, concentr., permanent stained smear, ag. det.	
	anal smear	culture, direct wet smear	
	preserved stool	concentration, permanent stained smear	
	sigmoidoscopy material	direct wet smear, stained smear	
	duodenal contents		
	anal impression smear	exam. of tapes for pinworm eggs	
Liver and spleen	sputum, induced sputum, broncholaveolar lavage fluid, transbronchial aspirate, brush biopsy specimen, aspirate, open-lung biopsy specimen	wet preparation, stained smear, immunoassays, histopathologic testing, PCR	
Lymph node	biopsy specimen	culture, stained smear, histopathol. test., PCR	
Muscle	biopsy specimen	histopathologic testing, PCR	
Urogenital system	vaginal discharge, urethral discharge, prostatic secretions, urine, biopsy specimen	culture, wet preparation, stain.smears, histopathol.test.	

DETECTION OF THE AGENT

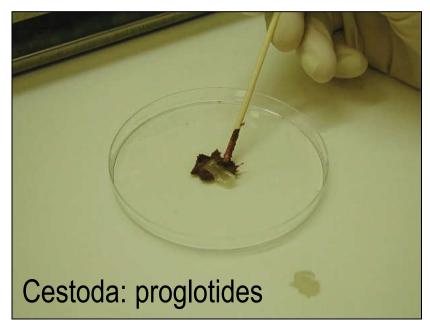
- 1) DIRECT macroscopically or microscopically
- culture: predermined culture media or tussue cultures under controlled laboratory conditions
- non-concentration methods: nativ fresh mounts

stained smears

concentration methods: flotation

sedimentation

filtration


• specific methods: detection of DNA, circulating antigens

Detection of the parasite DNA: limited use

Material: e.g. incondesable blood, stool, urine (fresh, frozen, fixed in pure 100% alcohol)

MACROSCOPICAL examination of samples

CULTURE

BLOOD CULTURE

Very important - e.g., due to sepsis, pneumonia, fever of unknown origin, puerperal sepsis, pelvic inflammation, neonatal epiglottitis...

Principles for Collection

- Gloves will be worn in accordance with standard precautions.
- A physician's order must be obtained for specimen collection.
- Appropriate verification of the patient's identity, by means of an armband or area specific procedure, will occur before the specimen collection.
- Cultures should be drawn before administration of antibiotics, if possible.
- If at all possible, blood cultures should <u>not</u> be drawn from lines, but should be drawn via venipuncture.

Materials

- Chlorhexidine swabs (1-2 packages)
- Alcohol swabs
- Blood culture bottles (2 bottles per set)
- 2 syringes (adult: 20 cc, pediatric: 5 cc)
- 2 needles (adult: 22 gauge or preferably larger butterfly or standard needle; pediatric: 25 or 23 gauge butterfly or standard needle)
- Gloves (sterile & nonsterile)
- Tourniquet
- Sterile gauze pad
- Adhesive strip or tape
- Self-sticking patient labels
- Plastic zip lock specimen bags

Step 7 – Draw Blood

7. Draw blood. Note the appropriate volume to obtain:

	Syringe needed	Aerobic bottle	Anaerobic bottle
Adult	20 ml	10 ml	10 ml
Pediatric	20 ml	2.5 - 10 ml	2.5 - 10 ml
Infant	3 ml	0.5 -1 ml	0.5-1 ml
Adult (low volume)*		All	None

Do not overfill bottles (do not add more than 10 ml of blood to each bottle)

*In some cases, it may not be possible to obtain 20 ml blood from an adult. If 10 ml or less is obtained, place all of the blood in the aerobic bottle.

Quality Problem Practices/ Healthcare/Health Contamination of blood Outcomes Interventions Intermediate cultures produces false · Diagnostic and positive test results for Outcomes Venipuncture treatment delays blood stream infections (versus IV Diagnostic and · Blood culture leading to adverse catheter) treatment errors contamination patient outcomes and · Unnecessary and wasted healthcare collection rates increased hospital resources. Phlebotomy Additional stays team (versus testing/follow-up Unnecessary Preventability/ other staff) antibiotic use associated with Improvement Hospital acquired Prepackaged re-evaluation infection Blood culture prep kit · Costs associated Costs associated contamination rates (versus no with above Range: 0.6% - 12.5% with above prep kit) Target: ≤ 3% (ASM, CLSI) Morbidity Mortality Harms - Needle-stick injury - Patient collection site infection

CEREBROSPINAL FLUID CULTURE

+ other normally sterile fluids — e.g., peritoneal, pleural, synovial

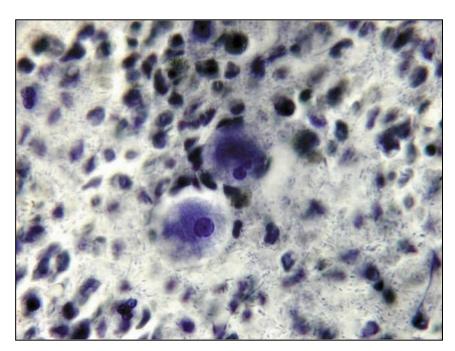
1-3 ml of fluid transported to the laboratory as soon soon as possible

DEFINITION OF SIGNIFICANT BACTERIURIA IN PREGNANCY

- in an asymptomatic pregnant woman, bacteriuria is considered significant if two consecutive voided urine specimens grow > 10⁵ cfu/mL of the same bacterial species on quantitative culture; or a single catheterised specimen grows > 10⁵ cfu/mL of a uropathogen
- in a pregnant woman with symptoms compatible with UTI, bacteriuria is considered significant if a voided or catheterised urine specimen grows > 10³ cfu/mL of a uropathogen

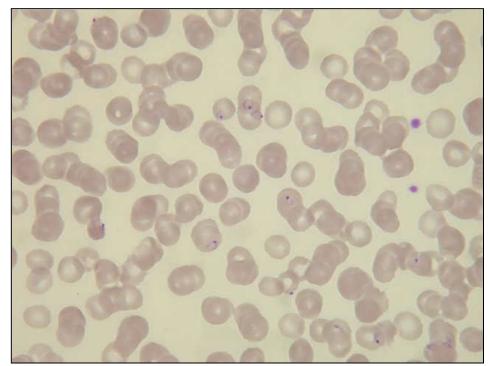
- > 10³ cfu/mL of uropathogens in a mid-stream sample of urine (MSU) in acute uncomplicated cystitis in women
- > 10⁴ cfu/mL of uropathogens in an MSU in acute uncomplicated pyelonephritis in women.
- > 10⁵ cfu/mL of uropathogens in an MSU in women, or > 10⁴ cfu/mL uropathogens in an MSU in men,
- or in straight catheter urine in women, in a complicated UTI.

In a suprapubic bladder puncture specimen, any count of bacteria is relevant.



Escherichia coli – 108 / ml

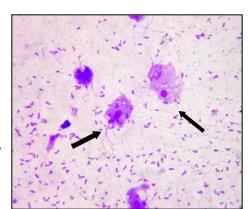
ASYMPTOMATIC BACTERIURIA


 diagnosed if two cultures of the same bacterial strain (in most cases the species only is available), taken > 24 h apart, show bacteriuria of > 10⁵ cfu/mL of uropathogens

MICROSCOPICAL examination of samples

Entamoeba histolytica cysts

Plasmodium falciparum


CULTURE & MICROSCOPY

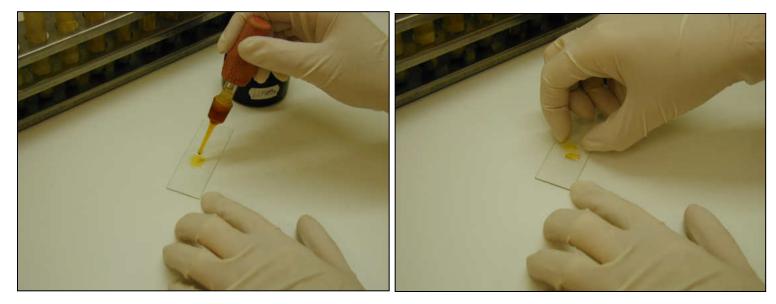
Material: **Smears**

e.g., of vaginal mucosa *Trichomonas vaginalis*

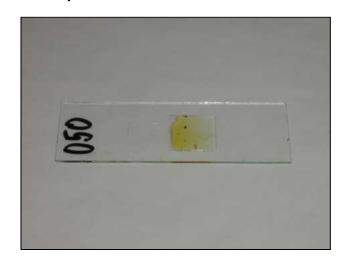
1. MICROSCOPY

EXAMINATION of smear - *in vivo*, staining by Giemsa - MOP)

2. CULTURE → MIKROSCOPY

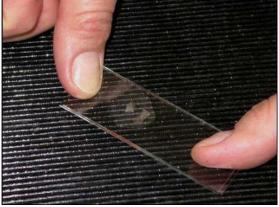


MICROSCOPY NATIVE WET MOUNTS



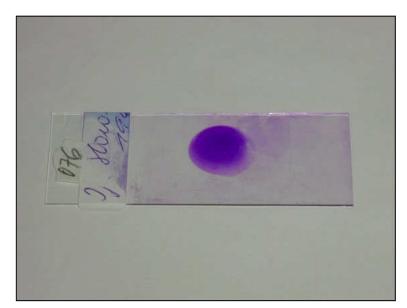
Enterobius vermicularis

MICROSCOPY WET FRESH STAINED MOUNT


Staining e.g. by **Lugol**'s iodine (e.g.,amoebae)

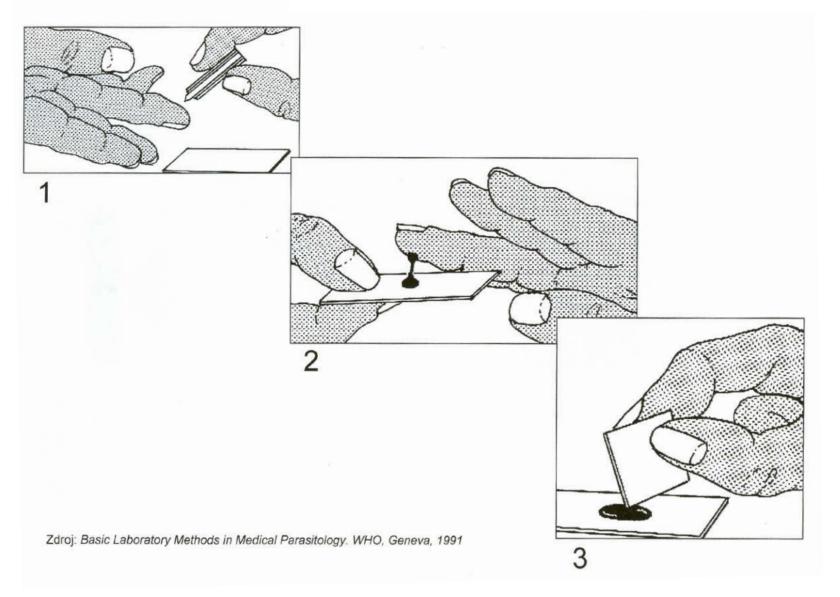
WET FRESH MOUNTS OF ORGAN BIOPSIES

Quantitative compressed biopsy technique (QCTB)

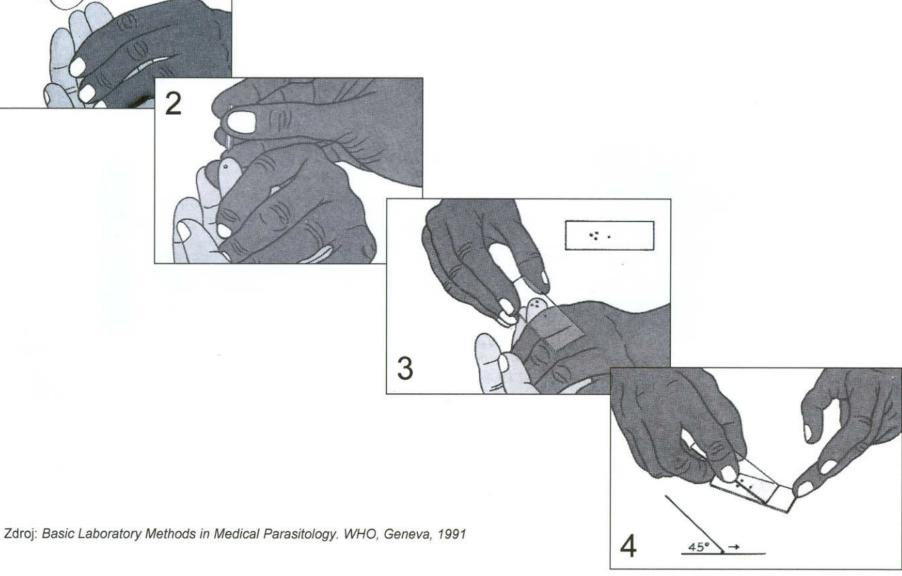


e.g. Schistosoma eggs

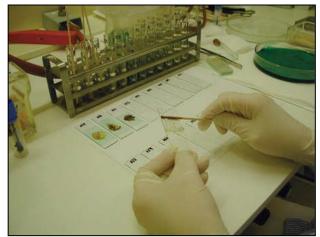
STAINED DRY SMEARS

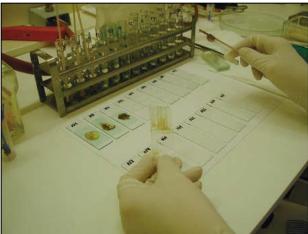

Thick smear stained by Giemsa (no fixation by methanol)

e.g. blood: malaria, filariases material: peripheral blood



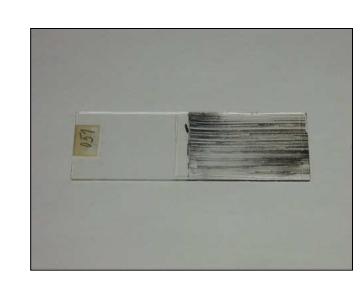
<u>Thin</u> smear: following fixation by methanol, staining by Giemsa


PERIPHERAL BLOOD: THICK SMEARS



PERIPHERAL BLOOD: THIN SMEARS

EXAMINATION OF FAECAL SMEARS



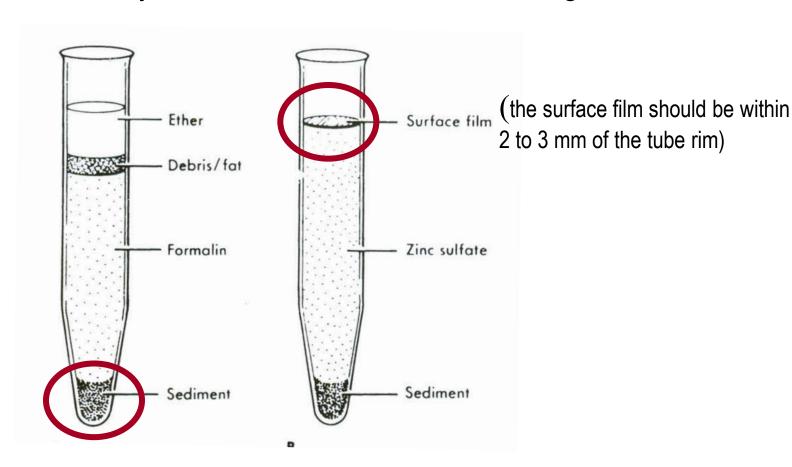
 $smear \rightarrow fixation \rightarrow staining$

e.g. eggs of intestinal protozoa

EXAMINATION OF FAECAL THICK SMEARS

Kato-Katz Technique – celophane faecal thick smears

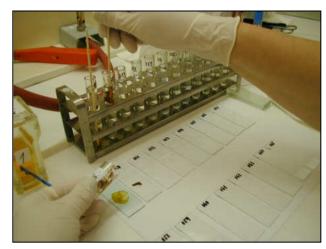
(glycerol-malachite green or glycerol-methylene blue solution; solutions are poured into the cellophane strips and soaked in this solution in a jar)

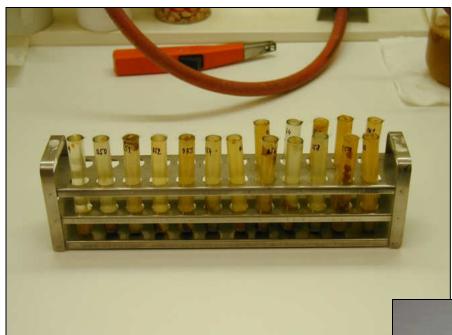

e.g. eggs of intestinal helmints

EXAMINATION OF CONCENTRATED MOUNTS

FECAL CONCENTRATION PROCEDURES

various layers seen in the tubes after centrufugation


A) Formalin-ether


B) Zinc sulfate

EXAMINATION OF CONCENTRATED MOUNTS

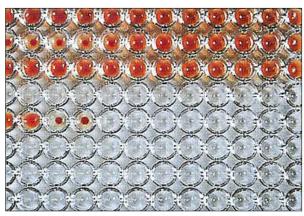
FLOTATION

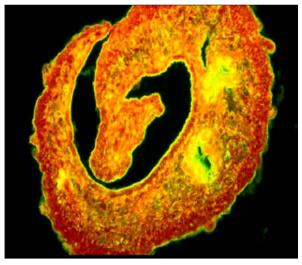
Zinc Sulfate (33% aqueous solution)

e.g. protozoan cysts, helminthic eggs

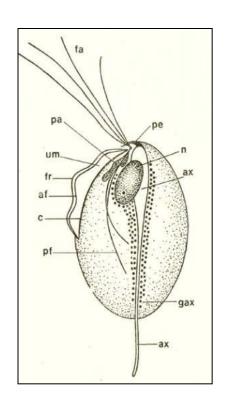
DETECTION OF THE AGENT

2) <u>INDIRECT</u> – using specifical methods, detection of specific <u>antibodies</u> in the serum, vitreous humour, CTF(when the agent is losalised in the organ/tissue)


methods: e.g., ELISA, IHA, IFAT, WB

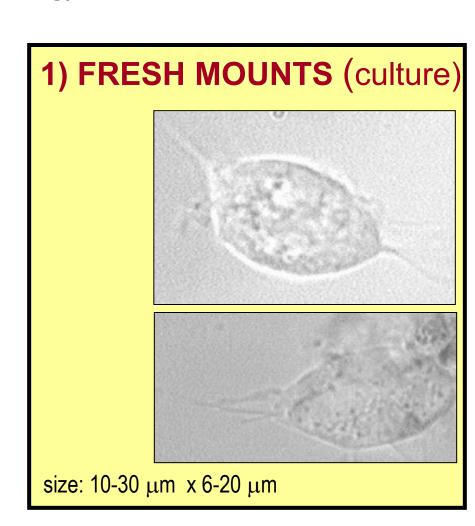

material: condensable blood

Examples

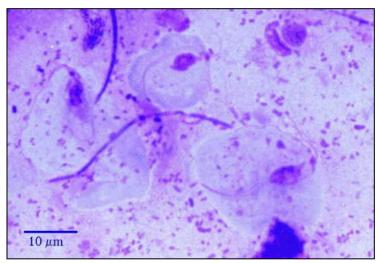

Trichomonas vaginalis

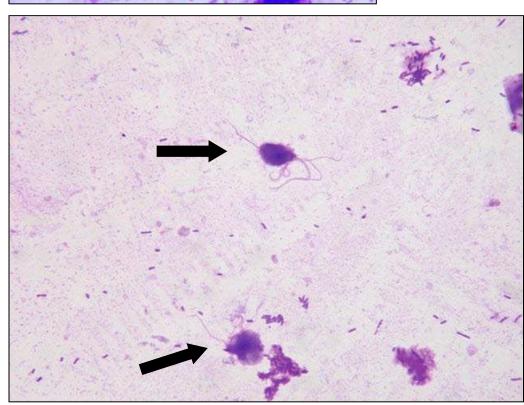
Trophozites: vaginal cavity and urethra

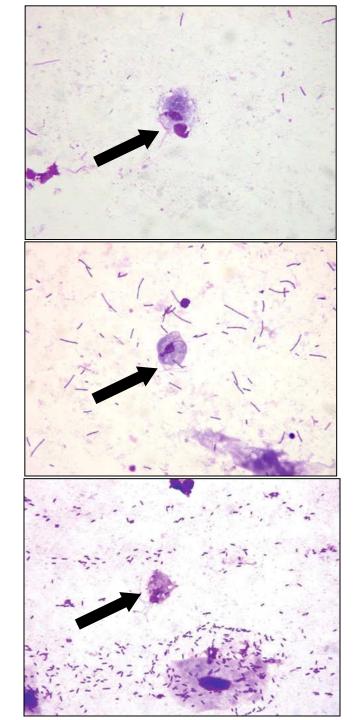
Transmission: veneral contacts


Diagnose: examination of discharge, vaginal smears

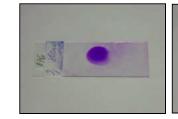
(staining mounts, culturing)




fa: anterior flagella,n: nucleus,ax: axostyle,um: undulating

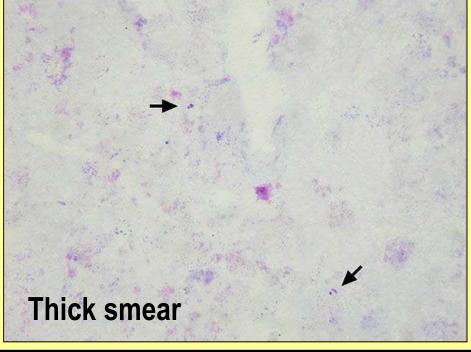

membrane

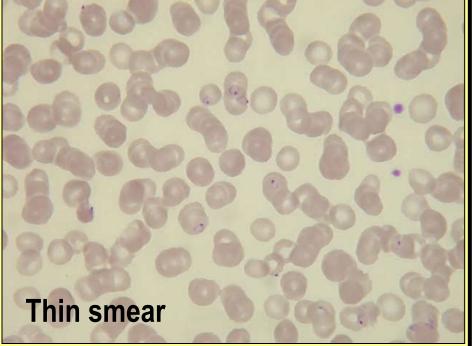
STAINED DRY SMEARS


Plasmodium

Disease: malaria

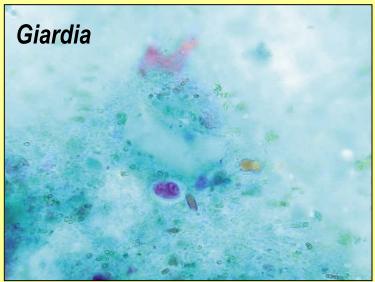
Transmission: vector

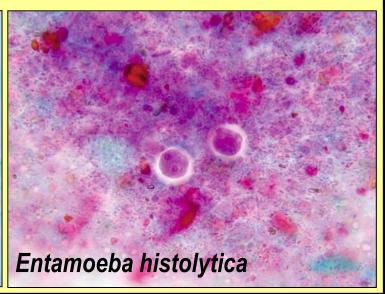

Diagnose: examination of peripheral blood smears


and other techniques such as PCR

3) STAINED BLOOD SMEARS

a) Entamoeba histolyticab) Giardia intestinalis

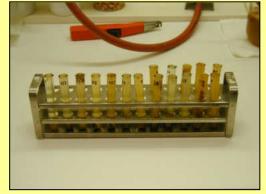

Disease: a),b) intestinal and a) extraintestinal infections


Transmission: per os (food born infection)

Diagnose: intestinal: examination of stool,

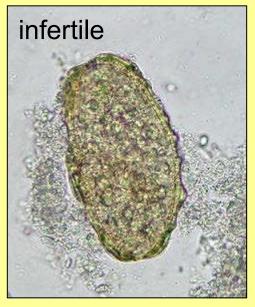
extraintestinal: detection of antibodies, immaging

4,5) STAINED FAECAL SMEARS


Ascaris lumbricoides

Disease: mainly intestinal infection Transmission: per os (food born infection)

Diagnose: examination of stool


6) MOUNTS PREPARED BY FLOTATION METHOD

Size: 60 x 45 μm

Size: 80 x 45 μm

Schistosoma mansoni

Disease: intestinal and organ infection

Transmission: by cercariae (water-born infection)

Laboratory dg.: examination of stool, detection of antibodies,

immaging

7) Quantitative compressed biopsy technique

Size:130-180 x 60-76 μm

Thank you for attention