Slides for Over Head Projection

Chapter 1: INTRODUCTION OF ENVIRONMENT

Lecture No.: 1: Concept and Components of Environment

Slide No.: 1:

Introduction to Environment Components and Definitions General Preception Definition: EPA 1986

The term Environment has been defined under section 2(a) of "Environment Protection Act (1986) to include water, air, land and inter-relationship between water, air, land and human beings, other living creatures, plants, microorganisms and property".

Definition: Mason and Langenhim

"The sum of all substances and forces external to an organism which determines its existence and regulates its process".

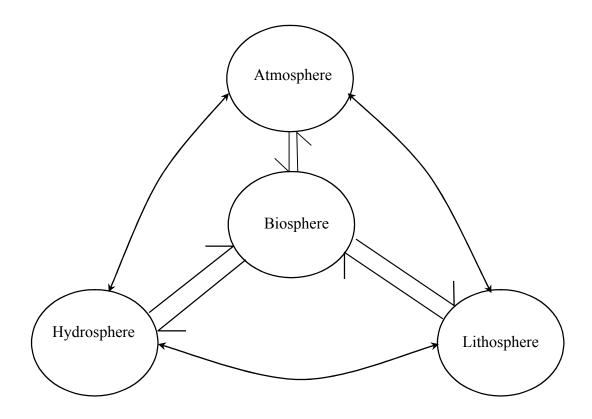


Figure 1.1: Pyramid of Life

Major Environmental Problems are:

Air Pollution Water Pollution Depletion of Biodiversity Waste Production Food Supply Problems

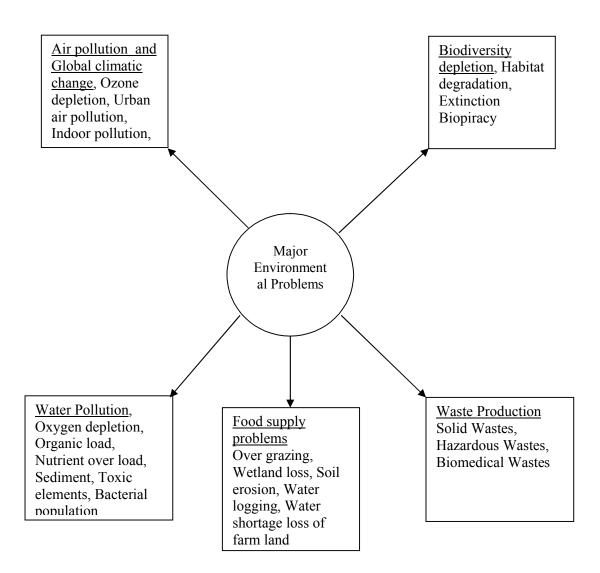
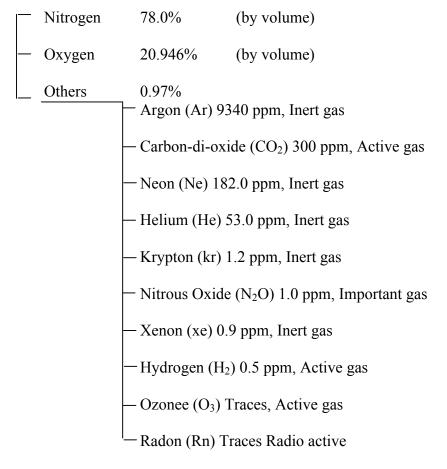



Figure 1.2: Major Environmental Problems

Atmosphere

i) Homosphere – Extends upto 80 km Composition Uniform

ppm = parts per million (by volume)

Other materials which are highly variable are sulfur-di-oxide (SO₂), Carbon-mono-oxide (Co) and water vapor.

ii) Heterosphere 80 km – 10,000 km Composition Non Uniform

- (i) Molecular Nitrogen Layer (N₂)
- (ii) Atomic Oxygen Layer (O)
- (iii) Helium Layer (He)
- (iv) Hydrogen Layer (H₂)
- $-80 \text{ km} \rightarrow 200 \text{ km}$
- 200 km \rightarrow 1100 km
- 1100 km \rightarrow 3500 km
- $-3,500 \text{ km} \rightarrow 10,000 \text{ km}$

Thermal Structure

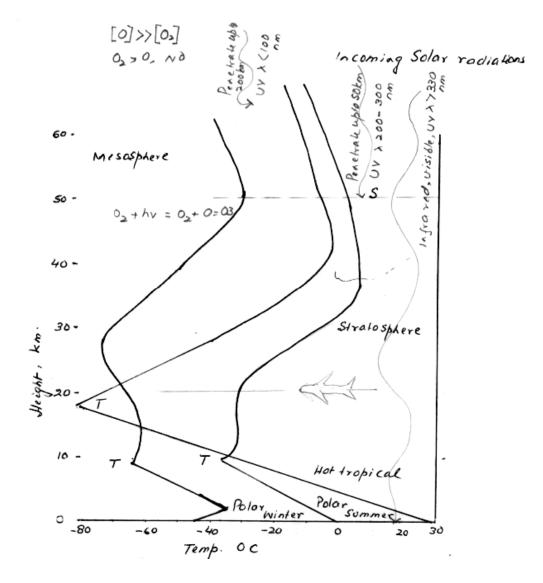
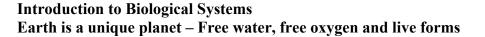
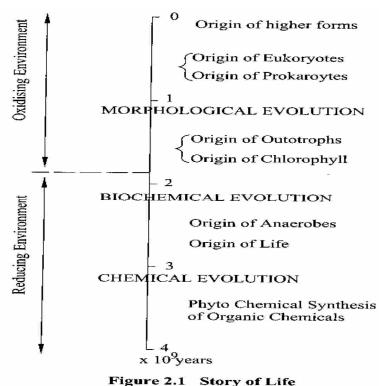


Figure 1.3: Structure of Atmosphere

$\underline{CHAPTER - 2.0}$

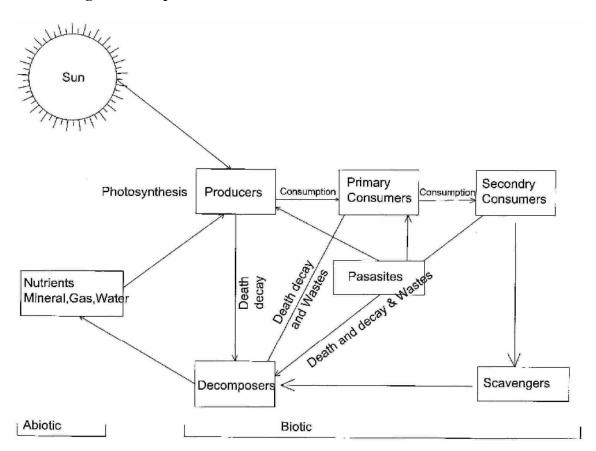

INTRODUCTION TO BIOLOGICAL SYSTEMS (Total Lectures Six)


Lecture No. 1 :	Introduction Origin and Story of Life Figure 2.1 Biological Spectrum Principle of Ecology Figure 2.2
Lecture No. 2 :	Cell Structure and Organisation Prokaryotic and Eukaryotic Cells General Organisation of Prokaryotic Cell (Figure 2.3) General Organisation of Eukaryotic Cell (Figure 2.4) Functions of Components Comparison of Prokaryotic and Eukaryotic Cells
Lecture No. 3 :	Molecular Organisation of Cells Metabolism - Principle - Role of enzymes Basics of Metabolism Figure 2.5
Lecture No. 4 :	Types of Plants and Animals Five Kingdom approach (Fig. 2.6 a, b, c) Estimates of Species in India (Table 2.1)
Lecture No. 5:	Kingdom Monera Kingdom Protista Kingdom Plantae
Lecture No. 6 :	Kingdom Animalia

Slides for Over Head Projection

Chapter 2: INTRODUCTION TO BIOLOGICAL SYSTEMS

Lecture No.: 1


Biological Spectrum

Cell \longrightarrow Tissue \longrightarrow Organ \longrightarrow Organ Systems (Prokaryotic and eukaryotic organisms) \longrightarrow Organisms \longrightarrow Population \longrightarrow Community \longrightarrow Biosphere (multicellular organisms)

Living forms exist at:

Cellular level	- Bacteria, Algae, Protozoa
Organism level	- Higher Plants and Animals
(Multicellular having tissues and organs)	

Every living being exists where metabolic needs are fulfilled.

Ecological Principle

Slide No.: 4

Cellular Organisations:

Prokaryotic Eukaryotic

<u>CHAPTER – 3.0</u>

FUNDAMENTALS OF ECOLOGY (Total Lectures Eight)

Lecture No. 1 :	Definition Ecology as a System – Ecosystem approach First order classification of ecosystems Ecosystem concept (Fig. 3.1) Structure and Functional Components Steps in ecosystem analysis
Lecture No. 2 :	Energy Circuits Flow of Energy in Ecosystem Estimates of Annual Net Productivity
Lecture No. 3 :	Biogeochemical Cycles Principles, Types Nitrogen Cycle (Figure 3.3)
Lecture No. 4 :	Phosphorus Cycle (Figure 3.4) Sulfur Cycle (Figure 3.5) Generalised Concept of Nutrient Cycle (Figure 3.6)
Lecture No. 5 :	Food Chain, Food Web Trophic Levels Description Through Managed Fish Pond (Figure 3.7) Ecological Pyramids (Figure 3.8)
Lecture No. 6 :	Development and Evolution Concept, Laws of Leibig and Shelford Physical Factors Ecological Regulation
Lecture No. 7 :	Ecological Succession Community Energetics, Community Structure Nutrient Cycling Homeostatics
Lecture No. 8 :	Summing and Revision Interrelationshiphs

<u>Slides for Over Head Projection</u>

Chapter 3: FUNDAMENTALS OF ECOLOGY

Lecture No. 1

Slide No. 1

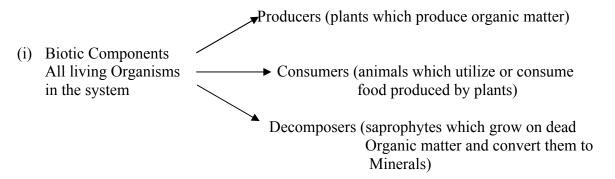
Fundamentals of Ecology

Ecology deals with interactions of living and non living environment.

Definition:

Ecology is a science which deals with relationship of living with the nonliving environment. Literally ecology is the study of organisms interacting with environment. It is a gross study of nature's anatomy and physiology.

First Order Classification of Ecosystem


		Annual Energy Flow kal/m ²
1.	Unsubsidised Natural Solar powered	1000-10,000
	Ecosystem Examples: Open seas, upland	(2000)*
	forests. These system constitute basic life	
	support systems.	
2.	Natural subsidized solar powered	10,000-40,000
	Ecosystem Examples: Tidal estuary, Rain	(20,000)
	forest. Natural productive Systems. They	
	produce excess organic matter which is	
	either stored or exported to other systems	
3.	Mansubsidised solar powered systems	10,000-40,000
	Examples: Agriculture, Aquaculture.	(20,000)*
	They are fibre and food producing	
	systems supported by auxiliary fuel or	
	energy.	
4.	Fuel powered Urban-Industrial Systems	100,000-3,000,000
	Examples: City, suburbs, industrial parks.	(2,000,000)*
	They are man's wealth producing and	
	pollution producing systems in which fuel	
	replaces solar energy. They are dependent	
	on other systems for life support, food	
	and fibre.	

*estimated average values

Concept of Ecosystem

The living organisms (Biotic community) and physical features (biotic components and gradients) of environment collectively constitute an ecological complex or a system known as Ecosystem.

Structure of Ecosystem

The amount of living material at any given time and at any given space is termed <u>Standing Crop.</u>

(ii) Abiotic components: include nonliving materials minerals and energy collectively called <u>Standing State</u>.

Slide No.: 3

Functional Components

(i) Autotrophs or Producers:

They constitute a self nourishing component. They utilize carbon-di-oxide from water/ air and solar energy with many other inorganic minerals from the environment they live in and produce organic matter in excess of their own requirements and store as food. The pre-requisite of these organisms is that they possess a system of photosynthetic pigments viz. chlorophyll, xanthophyl and phycocyanin.

(ii) Heterotrophs or Consumers and Decomposers:

They constitute those which consume the food produced by autotrophs/ producers, are animals. The plants on death and decay and animals on death and decay and the waste products (produced and thrown out of the body) promote the growth of individuals which can degrade the organic matter bacteria and release minerals (decomposers – bacteria and fungi).

Abiotic components	Basic inorganic and organic compounds molecules, ions, salts, H ₂ O, Co ₂ , O ₂ , Ca ⁺⁺ , Mg ⁺⁺ , Na ⁺ , K ⁺ , P, Co $_{3}^{\approx}$ HCo ₃ Cl, So ₄ ⁼ amino acids, sugars Small quantity in solution immediately available, larger quantity in particulate form Bottom, sediment Water depth, temp. cycle, light – cycle climatic regimes Rate of release of nutrients from solids, input temperature cycle, light cycle, determines the rate of functions
Biotic components	Rooted vegetation – submerged, floating, emergent Phytoplanktom – Algae Zooplankton – Protozoa, Crustacea High forms – Small fish, large fish Bacterial, fungus in water and water mud interface

An ecosystem can be conveniently analysed by:

- Energy circuits / flows Nutrient cycles (a)
- (b)
- Food chains Trophic Chains Diversity pattern Development and evolution (c)
- (d)
- (e)

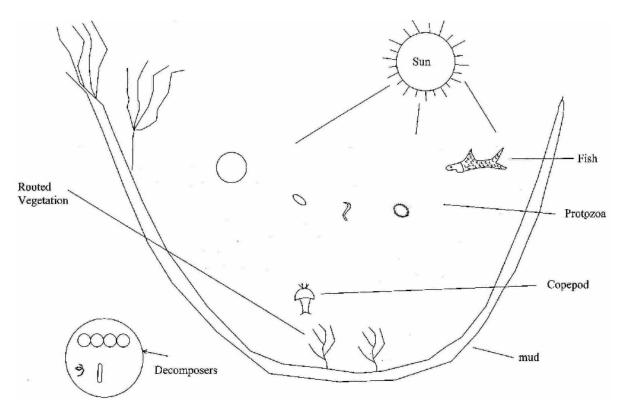


Figure 3.1: Pond as on Ecosystem