Origami Mathematics in Education

Michael Assis

Melbourne University School of Mathematics and Statistics

Tools and Mathematics 29 November 2016

• The Art of Folding

http://www.jccc.on.ca/assets/images/origami5.jpg

• The Art of Folding

http://img.gawkerassets.com/img/17jp3vs9qkjb6jpg/original.jpg http://res.artnet.com/news-upload/2014/05/origami-6.jpg http://www.joostlangeveldorigami.nl/fotos/historyoforigami/bug.jpg http://i.ytimg.com/vi/5nZtibCqFxw/hqdefault.jpg

• The Art of Folding

http://illusion.scene360.com/wp-content/themes/sahara-10/submissions/2012/10/jun_mitani_03.jpg http://farm5.static.flickr.com/4107/4946857347_a17b3e7900.jpg http://giangdinh.com/wp-content/uploads/2013/09/prayer.jpg

• The Art of Folding

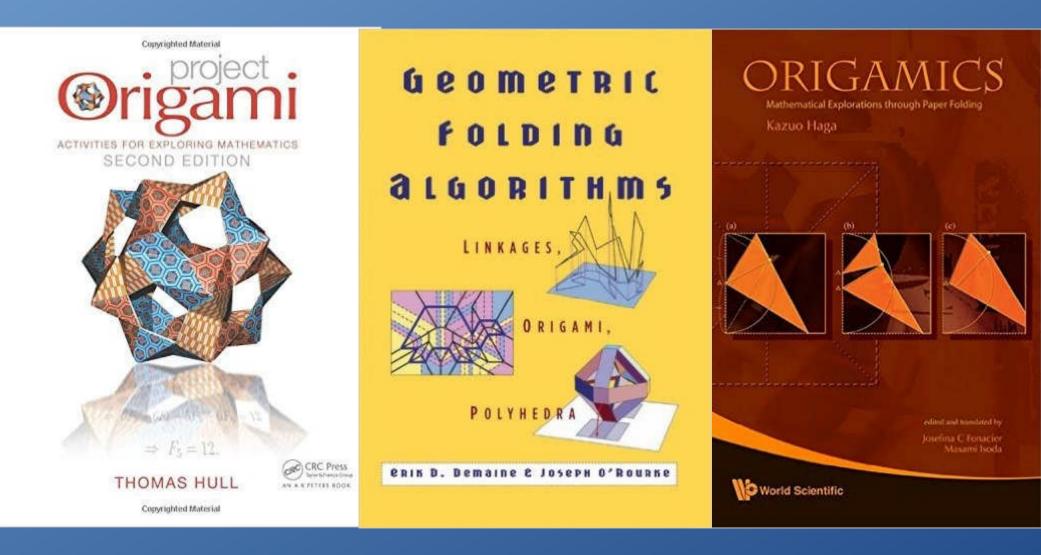
Toilet Paper Origami

DELIGHT YOUR GLESTS WITH FANCY FOLDS AND SIMPLE SURFACE EMBELLISHMENTS

LINKA WRIGHT

https://c2.staticflickr.com/4/3530/5835802683_a7ca138ff9.jpg http://www.tporigami.com/wp-content/uploads/2010/09/ToiletPaperOrigami_Cover.jpg https://nrgtucker.files.wordpress.com/2012/12/20121223-183459.jpg http://strictlypaper.com/blog/wp-content/uploads/2013/03/nintai-origami-inspired-dresses-strictlypaper-1.jpg

Origami in the Classroom



Origami Resources

1D Origami

Folding In Half

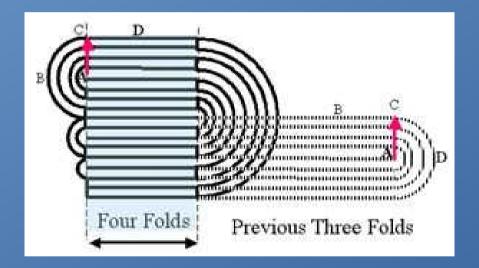
- How many times can you fold paper in half?
 - 8 times?

Folding In Half

- How many times can you fold paper in half?
 - 8 times?
- Is there an upper limit?

Folding In Half

• Britney Gallivan 2001



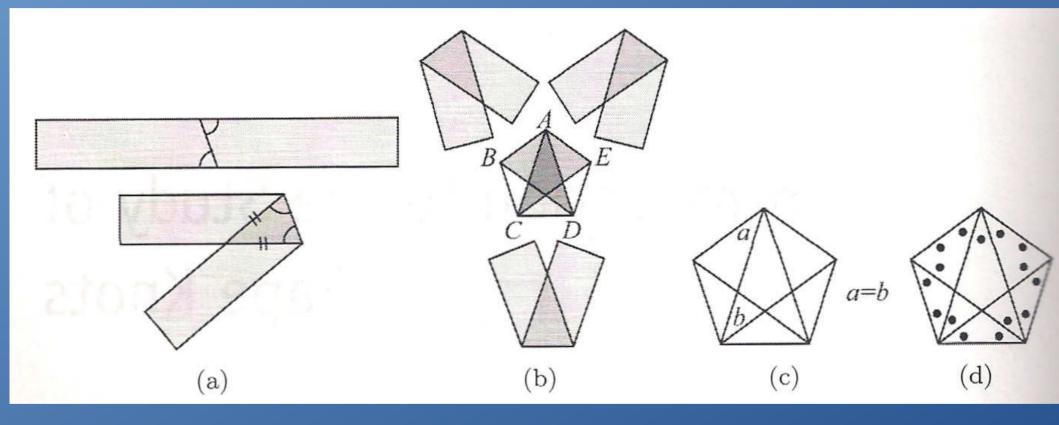
$$\mathbf{L} = \frac{\boldsymbol{\pi} \cdot \mathbf{t}}{6} \cdot (2^{\mathbf{n}} + 4)(2^{\mathbf{n}} - 1)$$

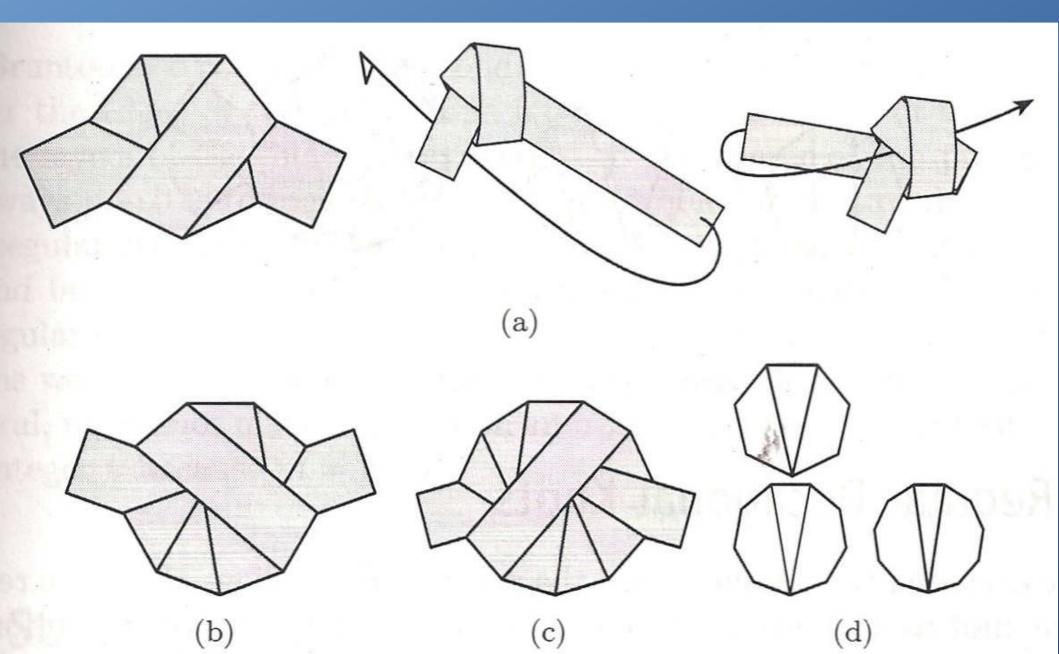
W =
$$\pi t 2^{3(n-1)/2}$$

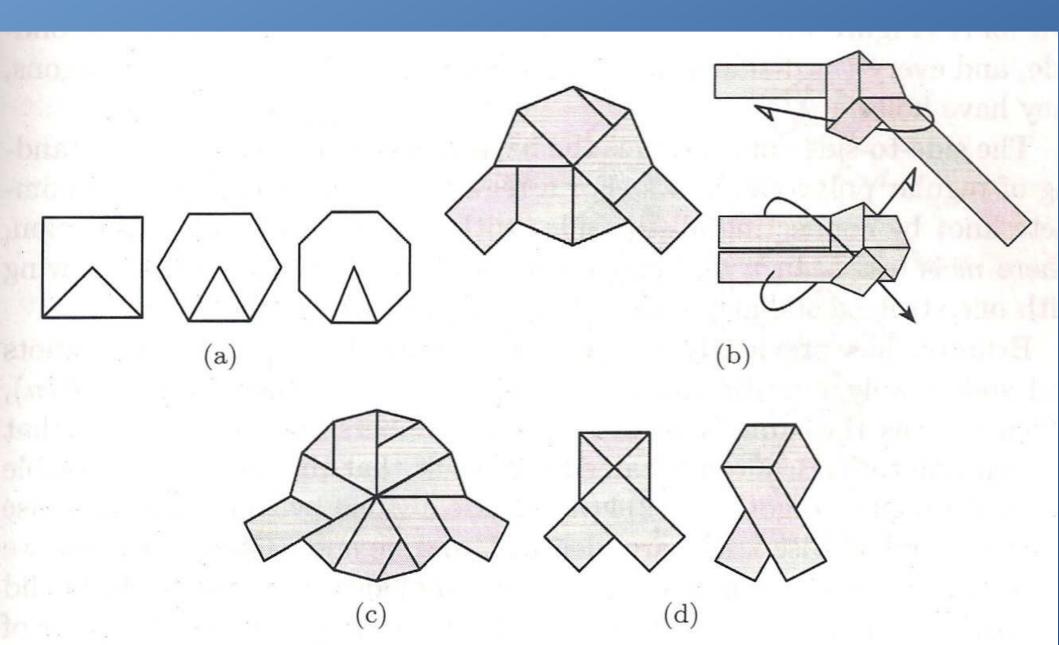
Activity 1

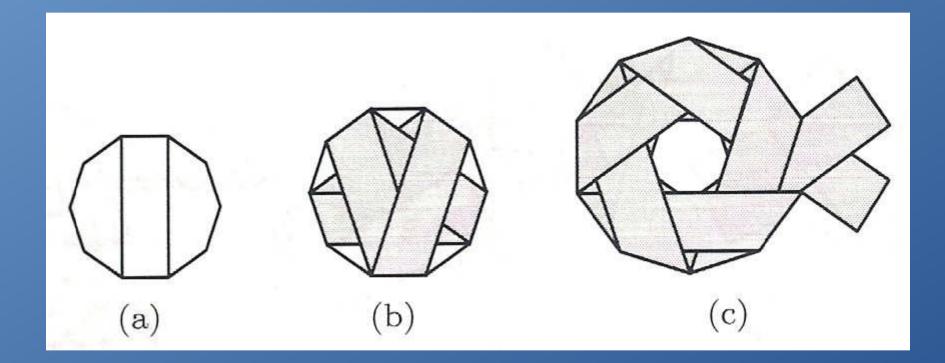
Parabolas

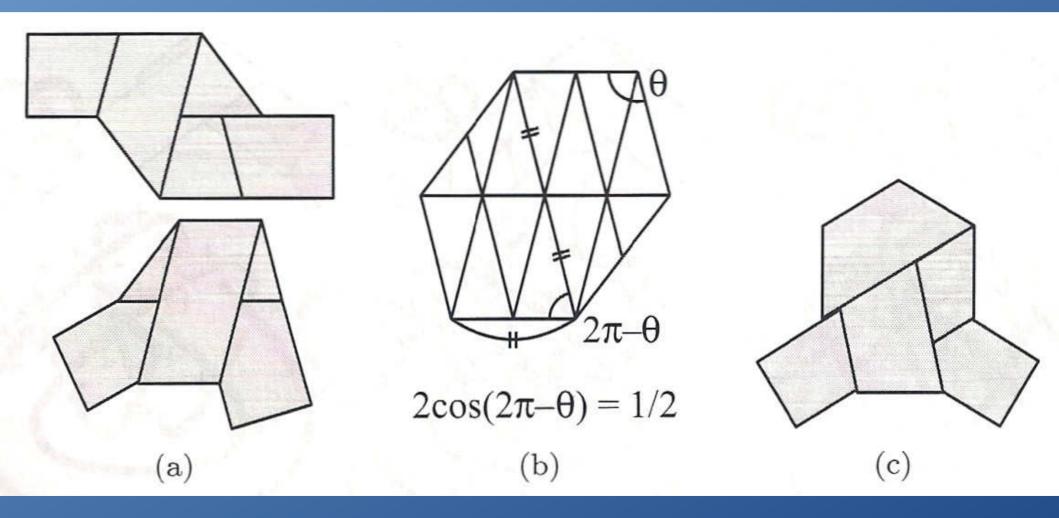
- Why does it work?
- Can other conics be constructed?
- What if you use non-flat paper?
- What can we learn concerning:
 - Parabolas ?
 - Envelopes?
 - Derivatives?
 - Tangents?
 - Convergence of sequences?

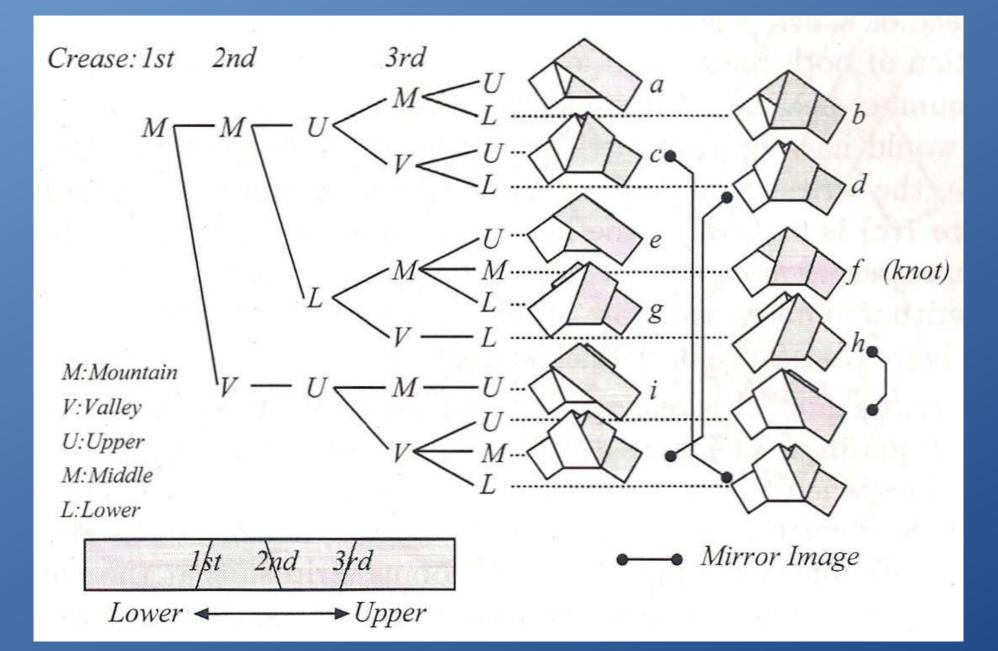


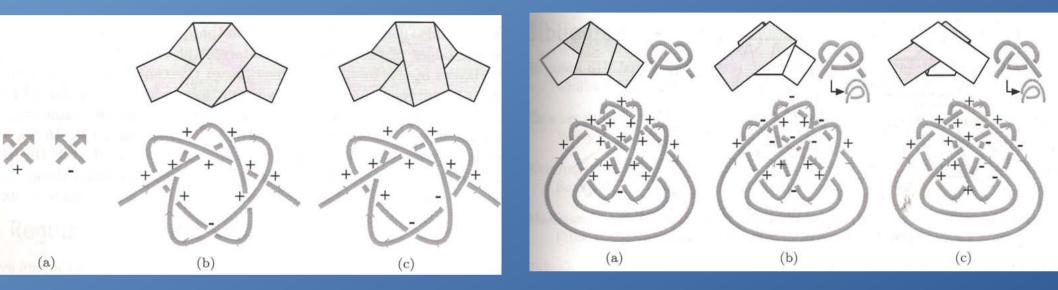


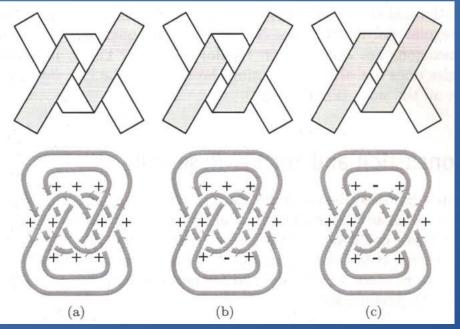












- Explorations:
 - Perimeter, area
 - Irregular patterns
 - Enumerations
 - Knot theory, topology

Activity 2

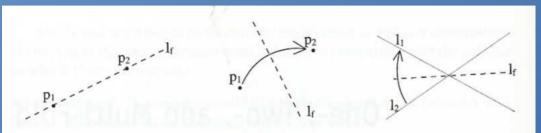
Fujimoto approximation

Fujimoto Approximation

- Error is halved at each operation
- Repeating left-right pattern represented as the binary expansion of 1/n
 - 1/5: .00110011...
 - 1/7: .011011011...

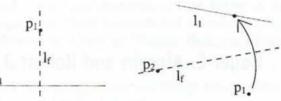
Between 1D and 2D

What geometric constructions are possible?



(O1) Given two points p_1 and p_2 , we can fold a line connecting them.

(O2) Given two points p_1 and p_2 , we can fold p_1 onto p_2 .



 l_1 l_1 l_f p_1 p_1

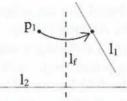
 l_1 onto l_2 .

(O3) Given two lines l_1 and l_2 , we can fold line

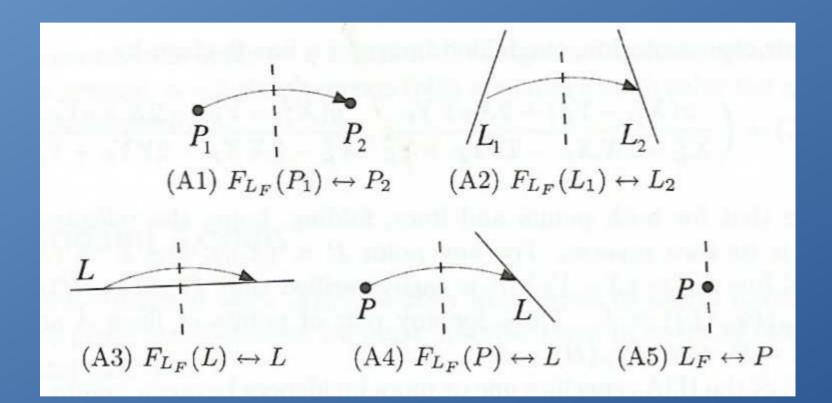
(O4) Given a point p_1 and a line l_1 , we can make a fold perpendicular to l_1 passing through the point p_1 . (O5) Given two points p_1 and p_2 and a line l_1 , we can make a fold that places p_1 onto l_1 and passes through the point p_2 .

(O6) Given two points p_1 and p_2 and two lines l_1 and l_2 , we can make a fold that places p_1 onto line l_1 and places p_2 onto line l_2 .

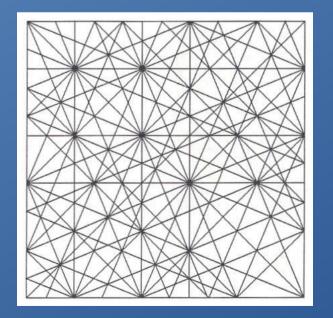
 p_2



(O7) Given a point p_1 and two lines l_1 and l_2 , we can make a fold perpendicular to l_2 that places p_1 onto line l_1 .



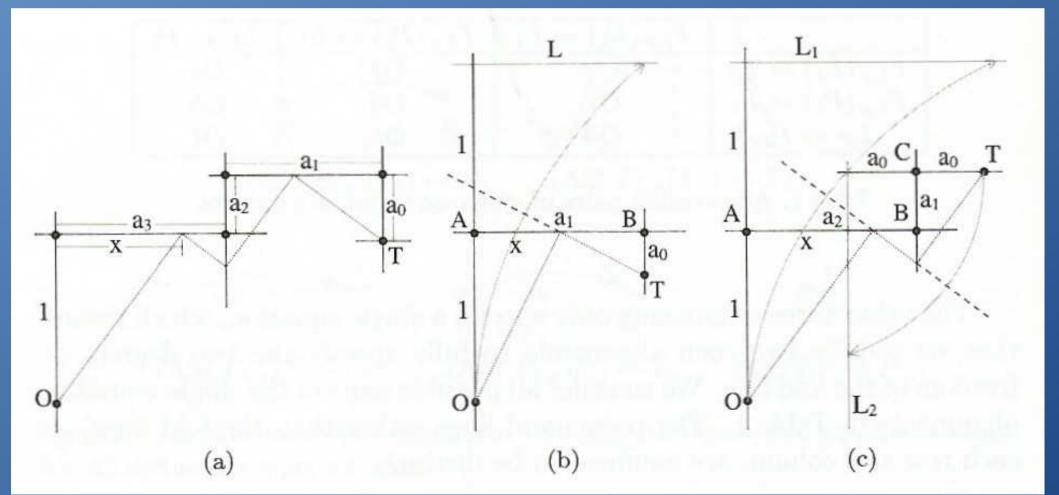
- 22.5 degree angle restriction
 - All coordinates of the form $\frac{m+n\sqrt{2}}{2^l}$ are constructible
 - Algorithm linear in I, log(m), log(n)

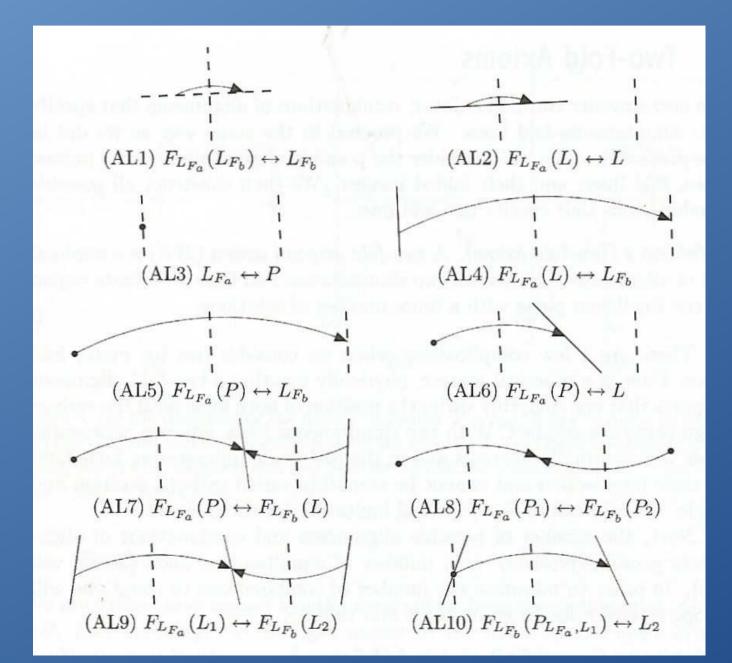


- More generally:
 - Constructible numbers of the form $2^m 3^n$
 - Angle trisection, cube doubling possible
 - Roots of the general cubic

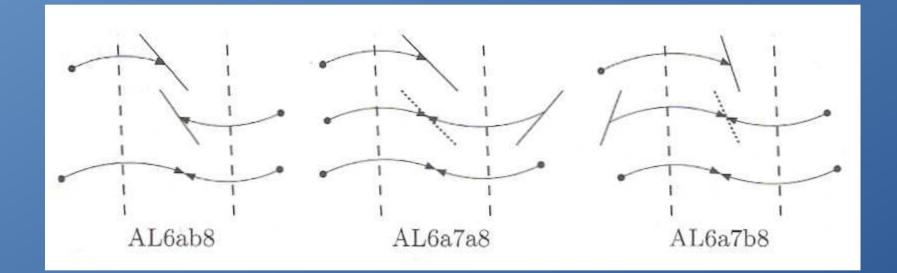
Polynomial root finding, Lill's method

$$x^{4}-a_{3}x^{3}+a_{2}x^{2}-a_{1}x-a_{0}=0$$
 $x^{2}-a_{1}x-a_{0}=0$ $x^{3}-a_{2}x^{2}+a_{1}x-a_{0}=0$

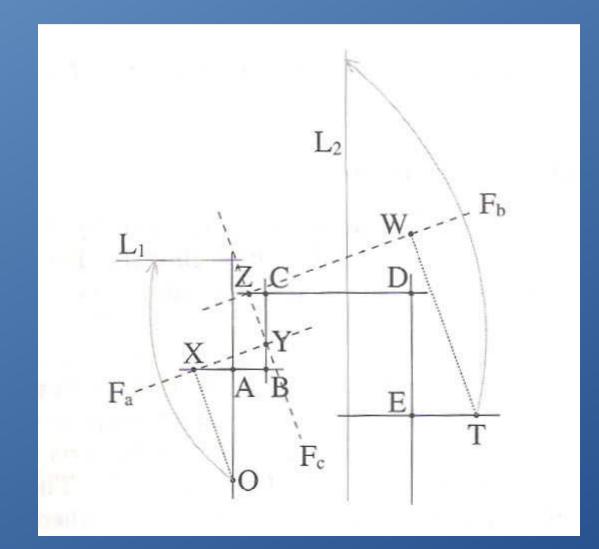




489 distinct two-fold line constructions



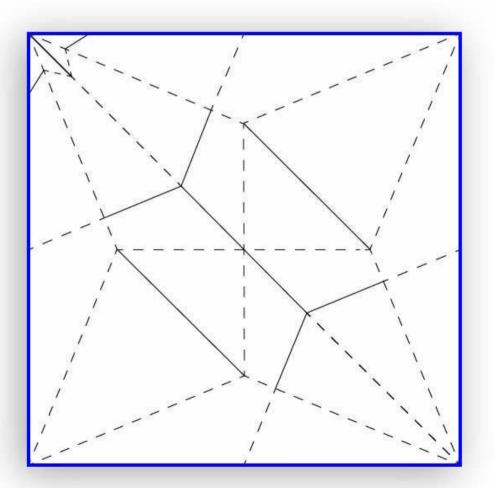
General quintic construction

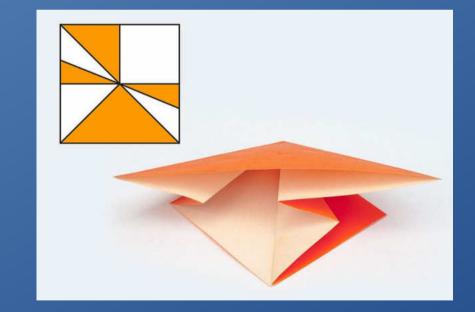


- Higher order equations, real solutions
 - Order *n* requires (*n*-2) simultaneous folds
- What can we learn concerning:
 - Polynomial roots
 - Geometric constructions
 - Field theory
 - Galois theory

Flat Foldability Theorems

• Maekawa's theorem: |M-V|=2, even degrees

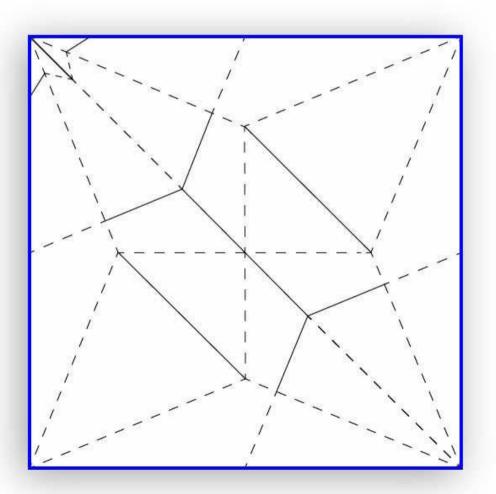


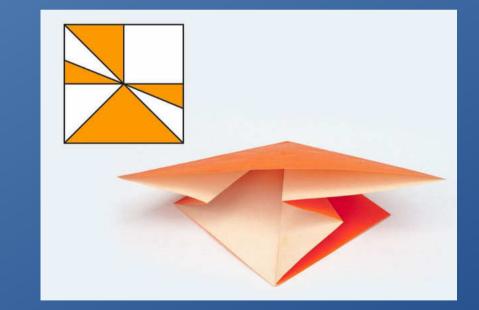


http://en.wikipedia.org/wiki/Maekawa%27s_theorem#/media/File:Kawasaki%27s_theorem.jpg

Flat Foldability Theorems

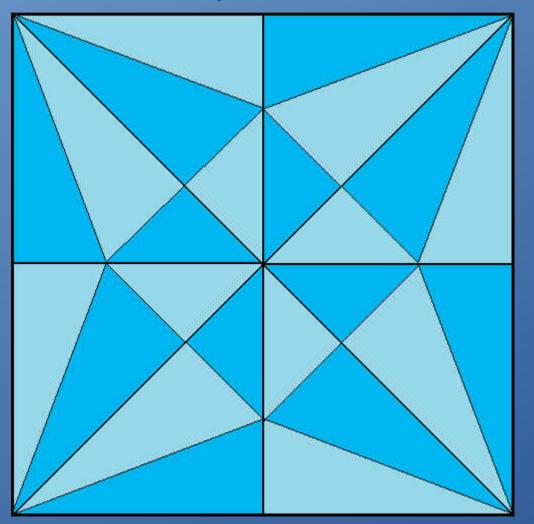
Kawasaki's theorem: sum of alternating angles equals 180°

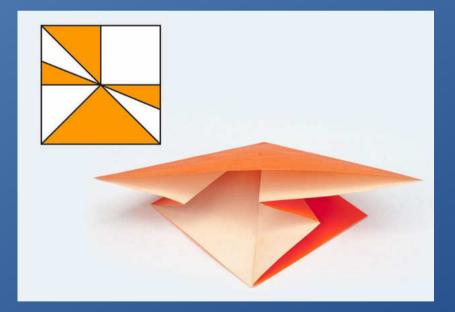




Flat Foldability Theorems

Crease patterns are two-colorable

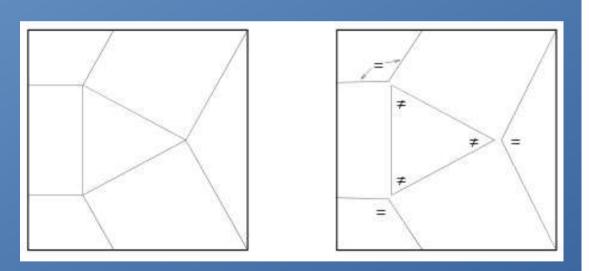


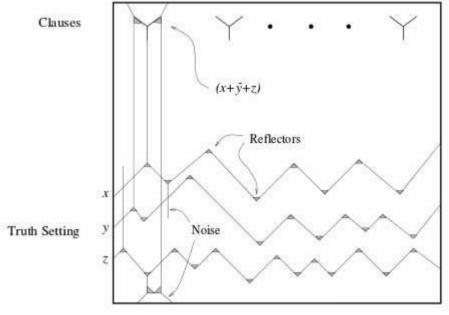


http://en.wikipedia.org/wiki/Mathematics_of_paper_folding#/media/File:Lang_rule_one.png

Flat Foldability is Hard

Deciding flat-foldability is NP-complete





The Complexity of Flat Origami. Marshall Bern , Barry Hayes. Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, 1996.

• What is a flap?

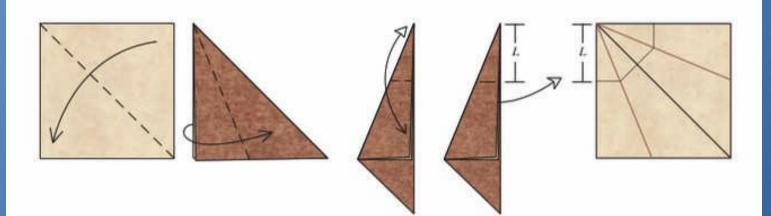
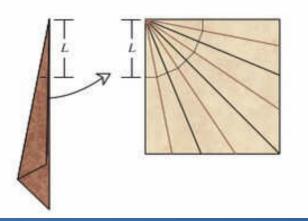
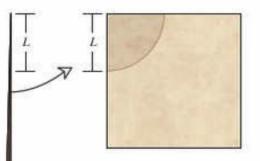


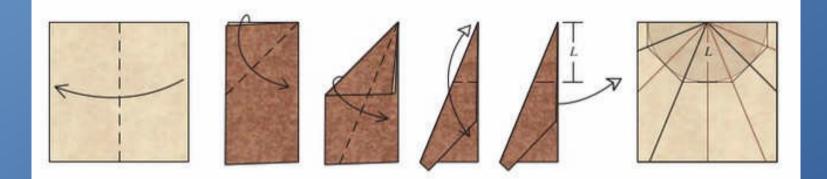
Figure 9.2. Folding a corner flap of length L from a square.

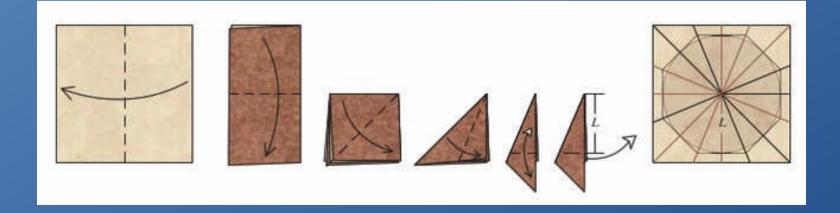




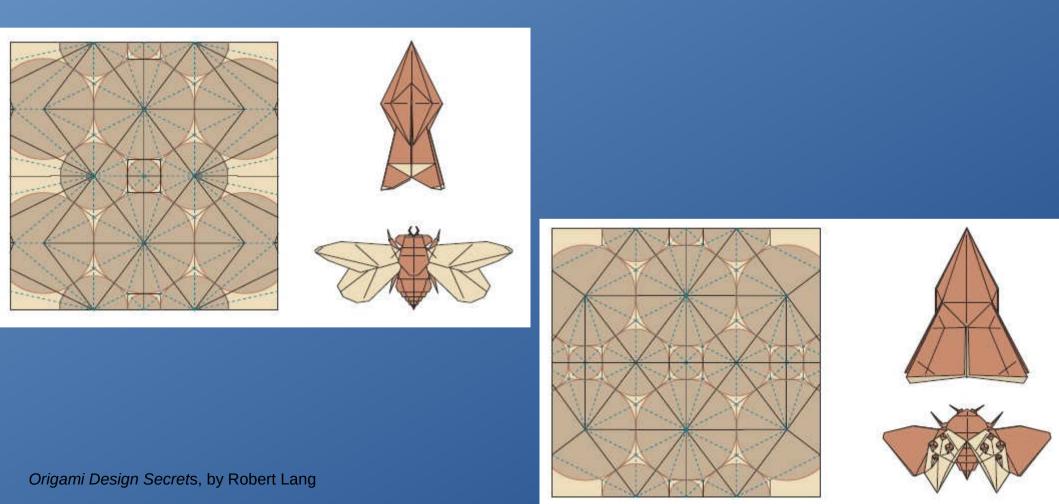
Origami Design Secrets, by Robert Lang

• What is a flap?

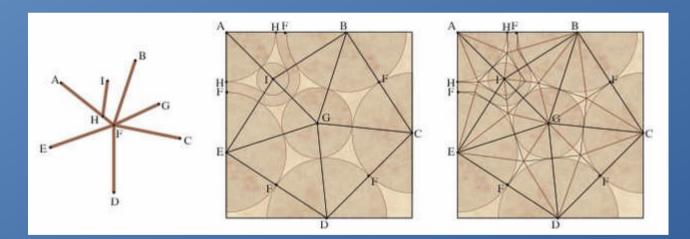


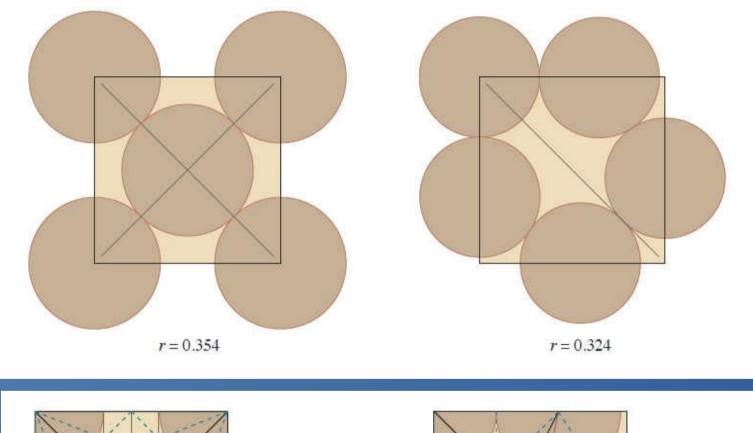


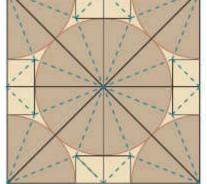
Understanding crease patterns using circles

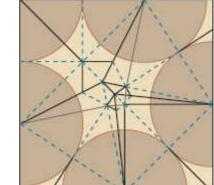


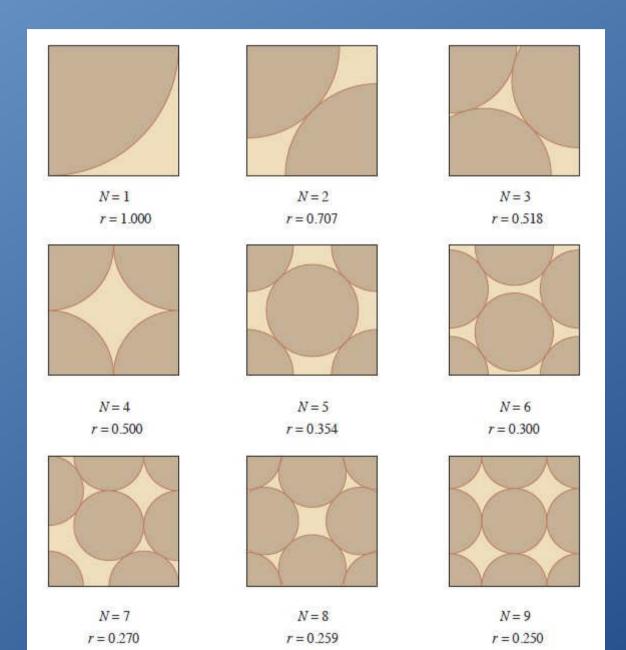
- Design algorithm
 - Uniaxial tree theory
 - Universal molecule

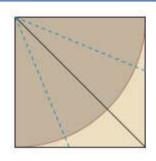




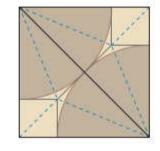






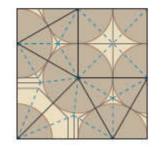


N = 1

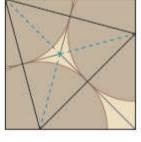


N = 2

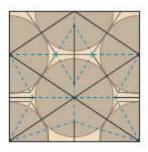
N = 4



N = 5

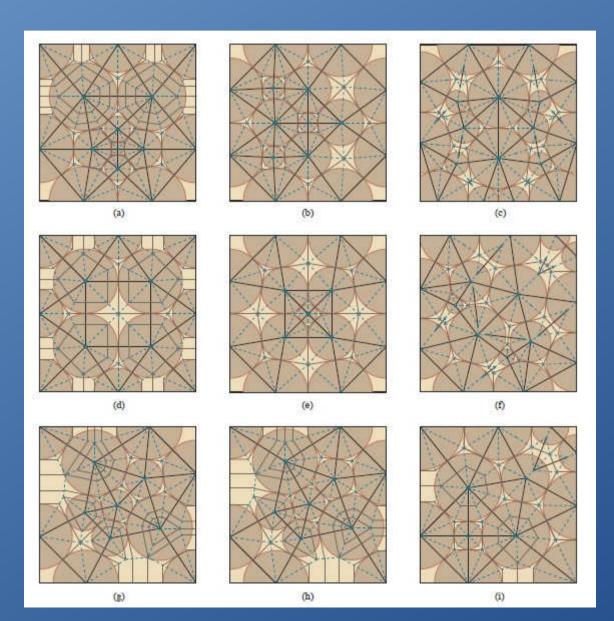


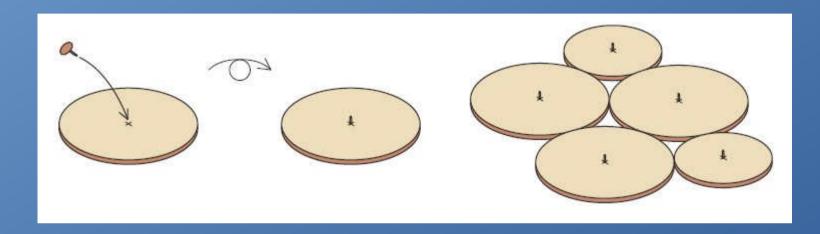
N = 3

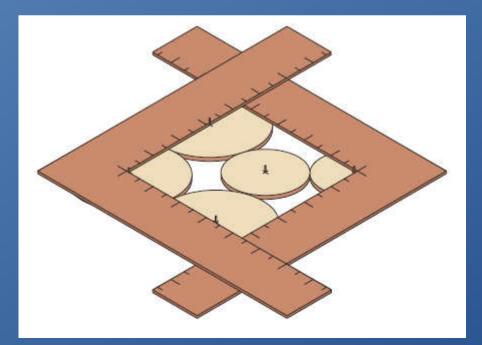


N = 6

N = 9



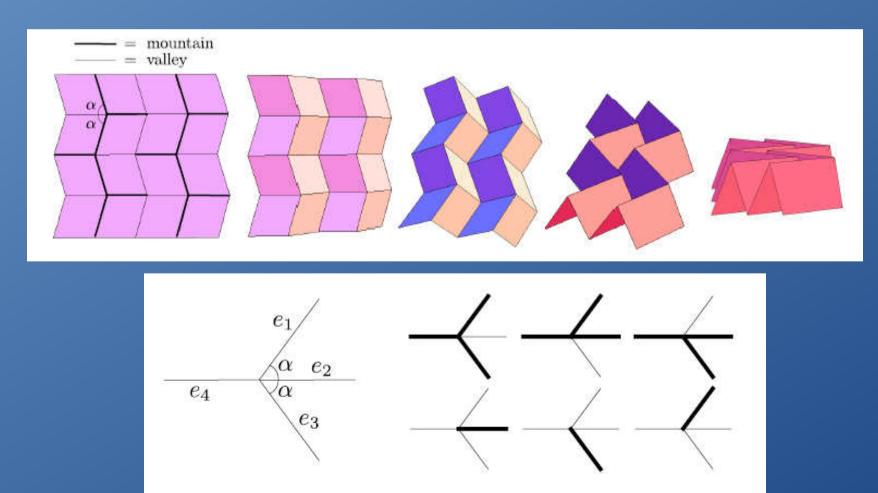




- Software TreeMaker automates solving the circle packing problem
- Non-linear constrained optimization problem

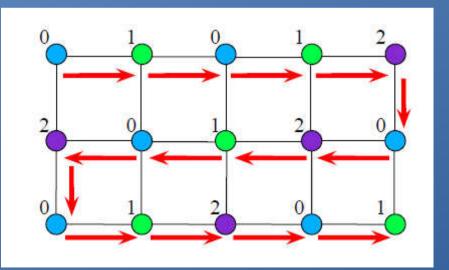
Coloring Problems

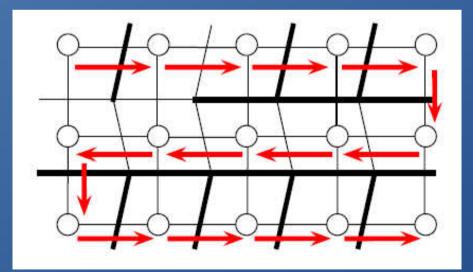
- Miura-ori: row staggered pattern
- One angle parameter



Coloring Problems

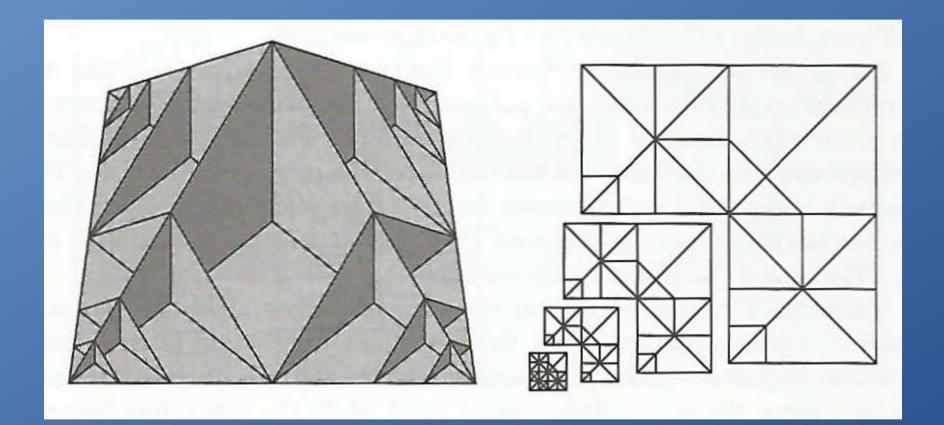
- Miura-ori: 3-colorings of the square lattice
- Equivalent to an ice problem in statistical mechanics
- Asymptotic number of colorings is $(4/3)^{3N/2}$



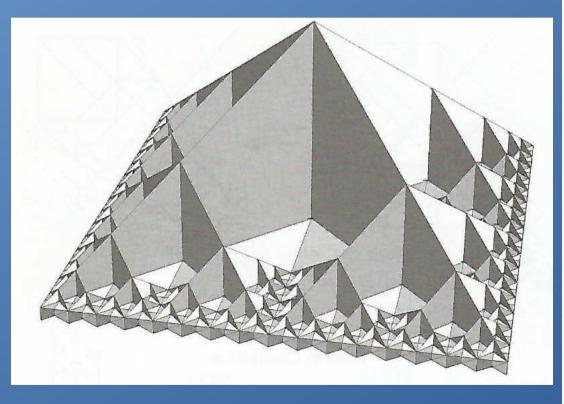


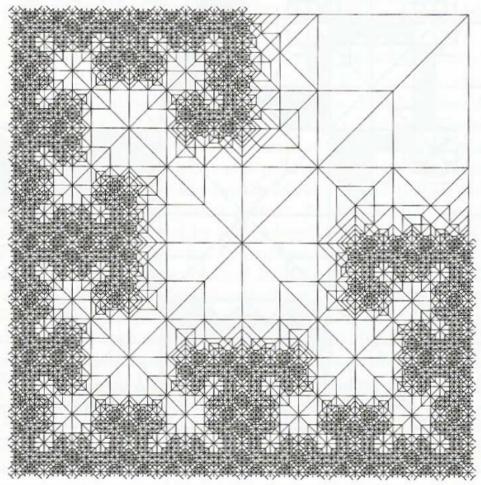
Beyond Flat 2D origami

Fractal Origami

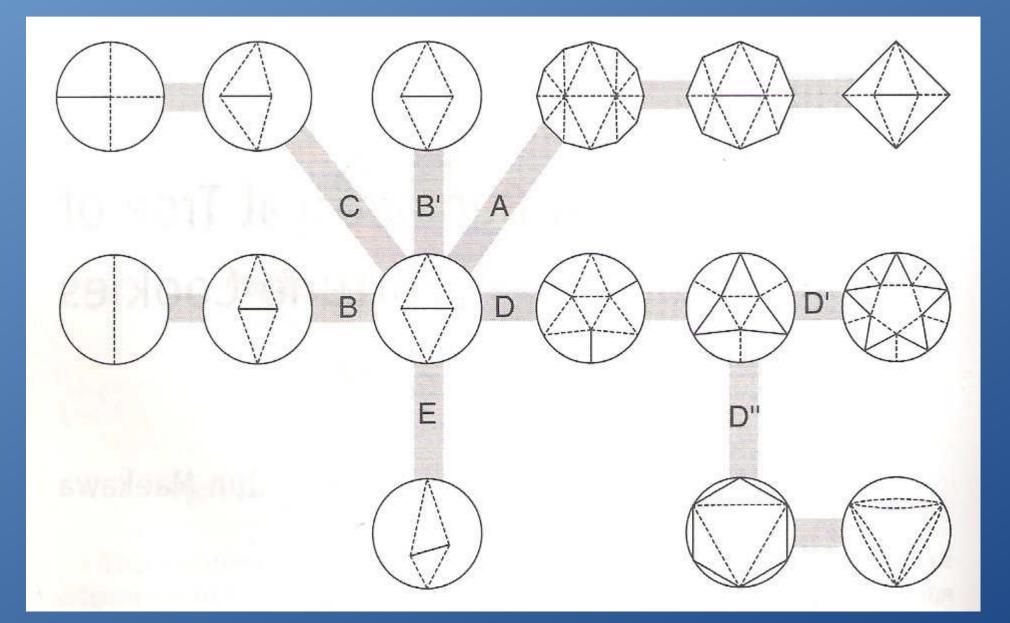


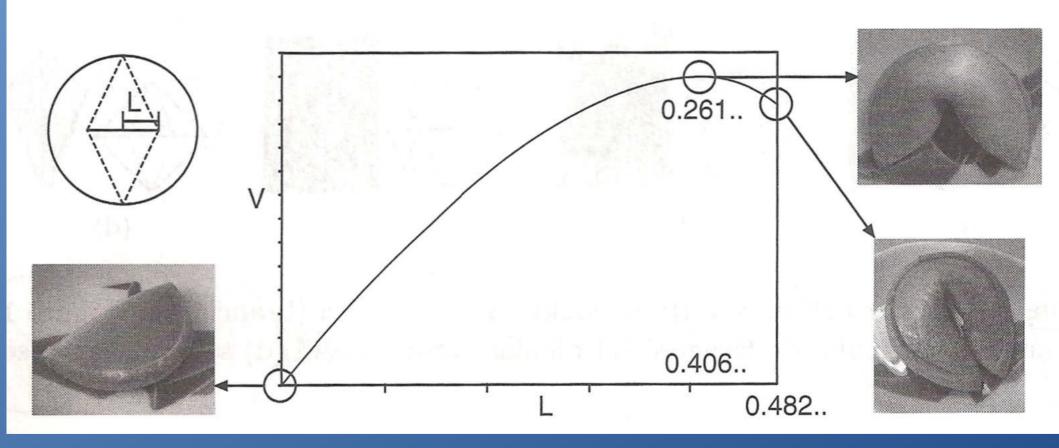
Fractal Origami

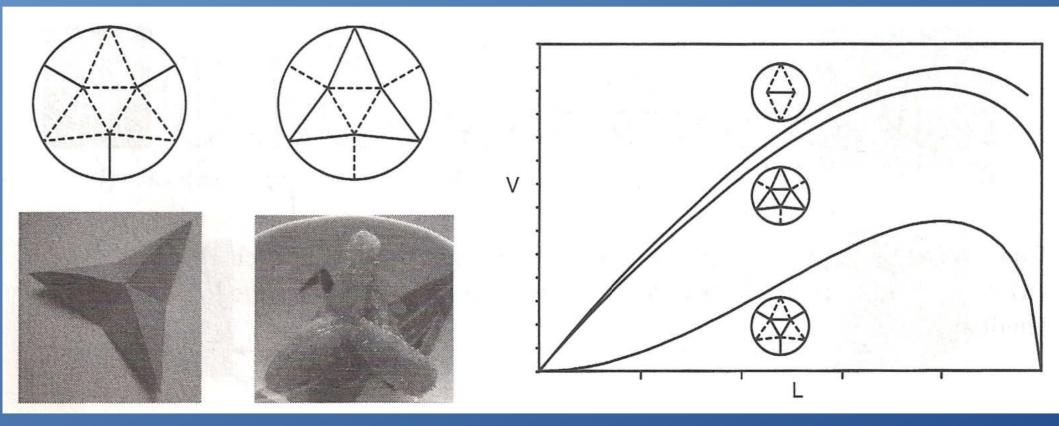




Fractal Origami





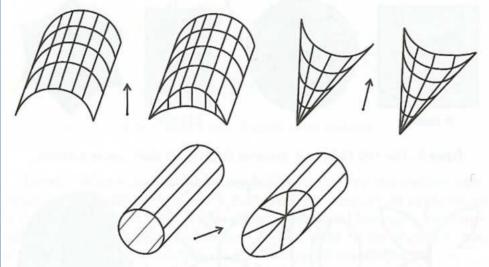


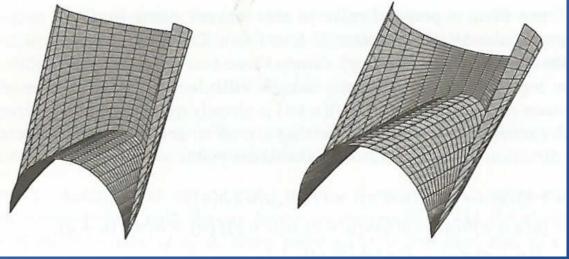
- Explorations:
 - Surface Area
 - Volume
 - Optimization problem
 - Other shapes

Non-flat paper

Non-flat paper

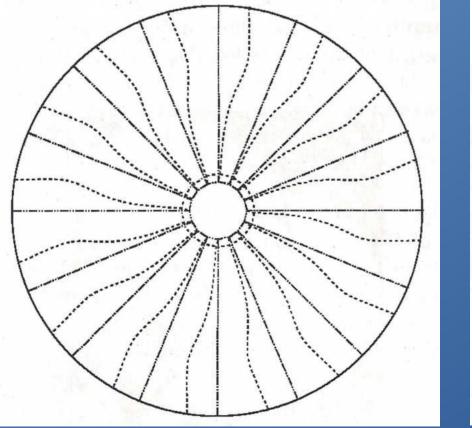
Conics

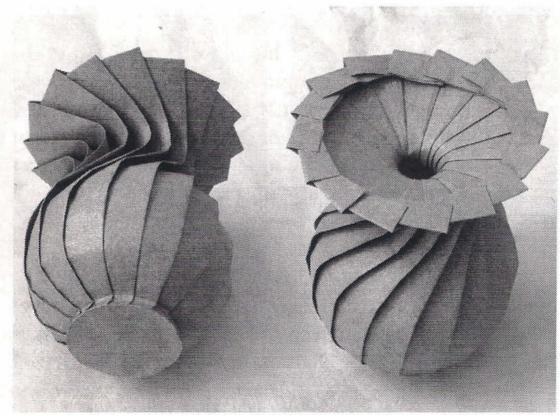


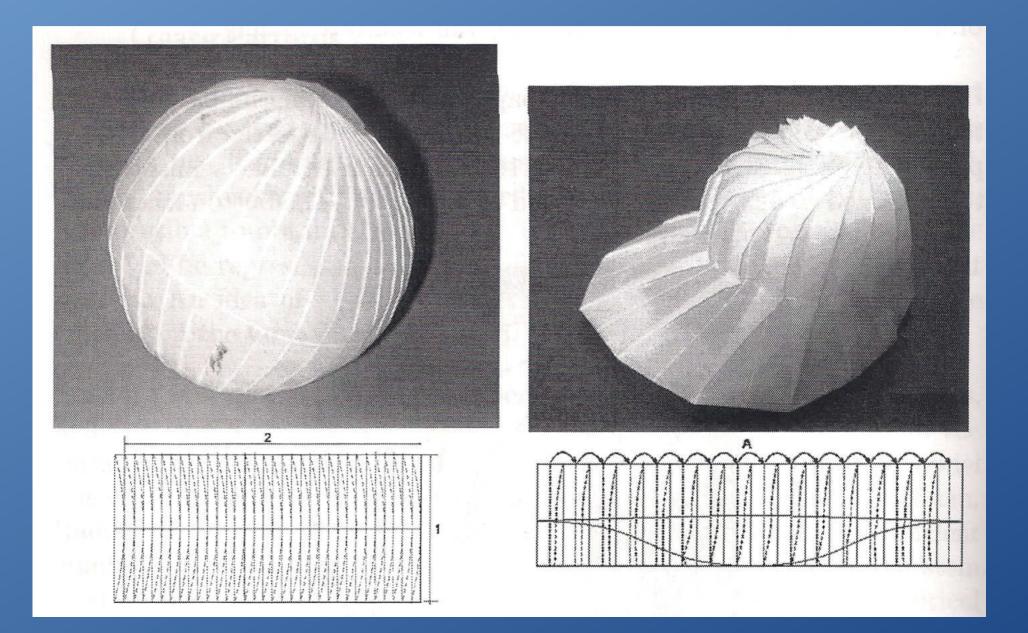


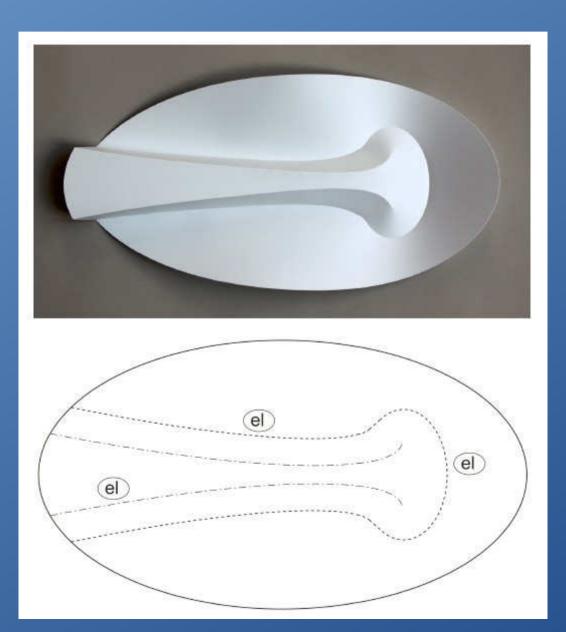
Non-flat paper

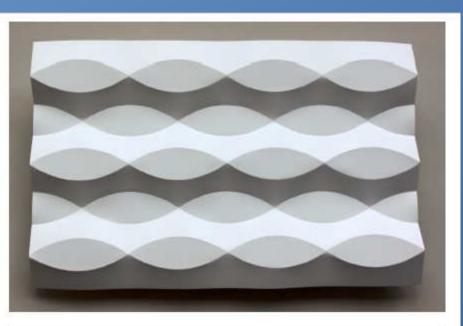
- Spherical paper, hyperbolic paper
 - One fold constructions are known

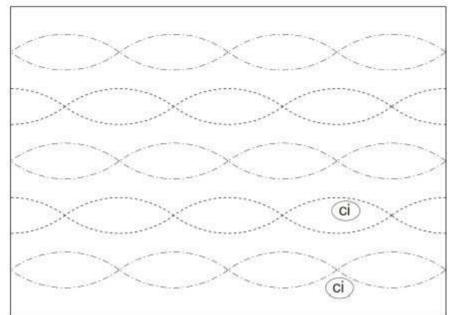












- No systematic algorithm for design known
- Direct applications in differential geometry
- Curved folding on non-flat paper not yet explored

A World Of Origami Maths

- Areas of mathematics involved only limited by imagination
- Many more applications in textbooks and convention proceedings
- Many simple research projects are awaiting students and teachers

Thank You!

